用户名: 密码: 验证码:
原发性肝癌三维适形放疗的临床研究及大鼠肝脏照射后肝再生的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分CT/MRI图像融合技术应用于原发性肝癌三维适形和调强放疗中靶区的确定
     目的:探讨原发性肝癌(HCC)病人CT与MRI图像融合的精度,以及如何确定大体肿瘤体积(GTV)。
     材料与方法:13例HCC病人行深吸气末屏气模拟CT定位扫描及呼气末MRIT2相扫描,其中6例病人又加作深吸气末屏气快速MRIT2相(MRIT2F)扫描。互信息法进行图像融合,自动匹配后手动微调。图像融合精度的评价指标为CT和MRI图像上骨性标记点在融合图像上两者间的距离(D_(CT-MRIT2),D_(CT-MRIT2F))及肝脏交叠度P-LIVER_(CT-MRIT2(CT-MRIT2F))。两位医师独立在CT及MRI图像上勾画GTV,分别计算依据CT及MRI勾画的GTV的体积、相互交叠的体积及融合后的总体积,并分别计算CT上GTV体积及MRI上GTV体积占融合后总体积的百分比。
     结果:D_(CT-MRIT2)及D_(CT-MRIT2F)分别为2.7mm±0.8mm及2.1mm±0.9mm。CT与MRIT2及MRIT2F的肝脏交叠度分别为85.0%±4.1%及92.7%±1.5%。两位医师在MRI上勾画的GTV差异非常小,但在CT上勾画GTV的差异有统计学意义。CT、MRIT2及MRIT2F上GTV的体积分别为387cm~3±396cm~3、488cm~3±461cm~3及597cm~3±541cm~3。CT及MRIT2上GTV的体积分别占融合后总体积的66.2%±13.5%及88.7%±10.2%,CT及MRIT2F上GTV的体积分别占融合后总体积的71.3%±12.7%及93.5%±4.8%。
     结论:用作CT和MRI融合的图像的采集尽可能在同一呼吸时相,保持同一体位,采用同样的扫描层厚和层间距。用自动配准软件,采用归一化的互信息法进行自动配准。用于放疗计划的GTV应该是CT和MRI图像上勾画GTV体积的总和。
     第二部分原发性肝癌三维适形放疗的Ⅰ期临床试验
     目的:确定三维适形及调强放疗(3DCRT/IMRT)应用于原发性肝癌(HCC)的最大耐受剂量(MTD)。
     材料及方法:入组标准为病理证实或临床诊断的HCC,单个病灶,直径大于5cm,不能行手术切除,无肝内播散和/或远处转移,肝硬化Child-Pugh A级。按肿瘤最大径分为2组:GroupⅠ(最大径>5cm<10cm)及GroupⅡ(最大径≥10cm)。GroupⅠ起始剂量46Gy,至最大剂量62Gy;GroupⅡ起始剂量40Gy,至最大剂量52Gy。常规分割,每次递增4Gy。剂量限制性毒性为≥3级急性肝脏、胃肠道毒性,任何5级的治疗相关性毒性或晚期放射性肝损伤(RILD)。
     结果:自2005年4月至2008年5月,共40例病人入组,其中GroupⅠ及GroupⅡ各20例。根据2006年AJCC分期,T2期20例,T3期17例,T4期3例。最后一随访时间为2009年1月,总的中位随访时间13个月,其中GroupⅠ为17.5个月,GroupⅡ为9个月。GroupⅠ中共发生11例(55.5%)急性治疗相关性毒副反应,其中1级9例,2级2例。GroupⅡ中共发生10例(50%)急性治疗相关性毒副反应,其中1级8例,2级2例。所有病人中,仅在GroupⅡ中的52Gy剂量水平在治疗后2个月发生1例非典型的RILD,经过2周对症治疗后死于肝衰竭。4例病人发生射野内复发,21例出现肝内播散,5例出现远处转移。2年局部控制率为90%,1、2年生存率分别为72%及62%。
     结论:ABC控制下的3DCRT/IMRT应用于局部进展期的HCC病人,肿瘤最大径>5cm<10cm的病人可以耐受62Gy,≥10cm的病人可以耐受52Gy,局部控制率令人满意。
     第三部分大鼠肝脏照射后肝再生的实验研究
     目的:对大鼠进行肝脏照射,检测受照射的肝脏是否出现再生现象,探讨再生的时间规律以及参与的细胞因子的作用。
     材料与方法:实验分为2部分:第1部分为将SD大鼠按处死时间不同随机分为5组,每组6只动物,分别为假照射组(0天)、照射后30天组、60天组、90天组和120天组。采用6MV-X射线单次照射,大鼠右半肝照射25Gy,左半肝照射5Gy。第2部分SD大鼠均为60天处死,随机分为5组,分别为假照射组(0Gy),其余为右半肝照射25Gy,按左半肝照射剂量不同分为2.5Gy组、5Gy组、7.5Gy组及10Gy组,每组6只动物。分别在照射后相应时间点处死大鼠,取各组大鼠血清,ELISA法检测肝细胞生长因子(HGF),酶法检测谷丙转氨酶(ALT)、谷草转氨酶(AST)及前白蛋白(PA)。HE染色检测左半肝核分裂相数,免疫组化测定PCNA及TGF-β1,实时荧光定量PCR测左右半肝HGFmRNA、TGF-β1mRNA及PCNAmRNA,流式细胞术检测左半肝增殖指数。
     结果:右半肝照射25Gy,左半肝照射5Gy大鼠在照射后60天,ALT和AST升高至峰值,PA降至最低,分别为正常大鼠的3.2倍、2.6倍及0.4倍,肝损伤最严重。ELISA示大鼠血清HGF在照射后30天升至峰值,与假照射组(0天)、照射后60天组、照射后90天组和照射后120天组比较有显著性差异(P<0.05)。在5Gy照射区内,HGFmRNA及TGF-β1mRNA均在照射后30天升至峰值,PCNAmRNA及增殖指数表达峰值出现在照射后60天,有丝分裂相肝细胞数在照射后90天最多。在25Gy照射区内,HGFmRNA及TGF-β1mRNA均在照射后30天升至峰值,PCNAmRNA表达峰值出现在照射后90天。右半肝照射25Gy,左半肝照射10Gy组在1周至两周之间死亡4只。在左半肝照射2.5Gy至7.5Gy各组中,AST及ALT随剂量增加而增加,差异有统计学意义(P<0.05),但PA值差异无统计学意义(P>0.05)。PCNAmRNA及TGF-β1mRNA随剂量增加表达增强,差异有统计学意义(P<0.05)。有丝分裂相肝细胞数随剂量增加各组间差异无统计学意义。照射5Gy及7.5Gy肝细胞增殖指数差异无统计学意义(P>0.05),但均明显高于照射2.5Gy肝细胞(P<0.05)。
     结论:照射25Gy的肝脏仍有再生的潜能;照射使再生的肝组织发生细胞周期阻滞,肝再生进程被延迟;大鼠无法耐受右半肝照射25Gy,左半肝10Gy,肝再生来不及代偿急性肝损伤。
Part 1:CT and MRI image fusion in delineation of gross tumor volume for 3-D conformal and intensity modulated radiation therapy for hepatocellular carcinoma
     Objective:To investigate the accuracy of image registration with computed tomography(CT) and magnetic resonance imaging(MRI) and how to determine GTV for HCC.
     Material and Methods:Thirteen patients were enrolled in this study.The CT image was taken at inhalation phase,and MRIT2,at the time of peak exhalation. Additional image was taken by fast scanning of MRIT2(MRIT2F) at peak inhalation in six patients.After mutual information method to CT/MRI image registration, manual adjustment was made to optimize the accuracy of image fusion.The GTV and liver in each patient were independently contoured by two observers on CT,MRIT2 and MRIT2F images.The accuracy of image fusion was assessed by the distance between bone markers(D_(CT-MRIT2),D_(CT-MRIT2F)) of CT and MRI on the fused image,and the ratio of liver overlap(P-LIVER_(CT-MRIT2),P-LIVER_(CT-MRIT2F)).The measured were volumes of GTV contoured on CT(V-GTV_(CT)),or on MRIT2(V-GTV_(MRIT2)),or on MRIT2F(V-GTV_(MRIT2F)),their overlap(V-GTV_(CT-MRIT2),V-GTV_(CT-MRIT2F)) and their composite volume(V-GTV_(CT+MRIT2),V-GTV_(CT+MRIT2F)).The percentage of V-GTV_(CT) and V-GTV_(MRIT2) on V-GTV_(CT+MRIT2),V-GTV_(CT) and V-GTV_(MRIT2F) on V-GTV_(CT+MRIT2F), V-GTV_(CT-MRIT2) and V-GTV_(CT-MRIT2F) on V-GTV_(CT) was also calculated,respectively.
     Results:Accuracy of image fusion was the mean D_(CT-MRIT2) of 2.7 mm±0.8mm and D_(CT-MRIT2F) of 2.1mm±0.9mm.The mean P-LIVER_(CT-MRIT2) and P-LIVER_(CT-MRIT2F) were 85.9%±4.1%and 92.7%±1.5%.Interobserver difference was small for GTV defined by MRIT2,but there was significant difference for GTV defined by CT between two observers.V-GTV_(CT),V-GTV_(MRIT2) and V-GTV_(MRIT2F) were 387cm~3±396cm~3,488cm~3±461cm~3 and 597cm~3±541cm~3,respectively.The percentage of V-GTV_(CT) and V-GTV_(MRIT2) on V-GTV_(CT+MRIT2) was 66.2%±13.5%and 88.7%±10.2%,V-GTV_(CT) and V-GTV_(MRIT2F) on V-GTV_(CT+MRIT2F) was 71.3%±12.7% and 93.5%±4.8%,respectively.
     Conclusions:The fusion image of CT and MRI should be obtained at the same respiratory phase,in the same treatment position and with the same slice thickness and separation.Automatic registration was carried out by mutual information method using automatic registration software.When contouring GTV of HCC,CT and MRI image should be integrated.GTV used to be planned should be the sum of CT-defined GTV and MRI-defined GTV.
     Part 2:PhaseⅠtrial of radiation dose escalation in patients with locally advanced hepatocellular carcinoma
     Purpose:To determine the maximum tolerated dose(MTD) of 3-dimensional conformal radiation therapy(3DCRT)/intensity modulated radiation therapy(IMRT) for locally advanced hepatocellular carcinoma(HCC).
     Materials and Methods:Inclusion criteria were as follows:pathologically confirmed or clinically diagnosed HCC,surgically unsectable or medically inoperable diseases,solitary intrahepatic lesion with diameter bigger than 5 cm,without extrahepatic and/or distant metastases,associated with cirrhosis of Child-Pugh A.The patients were divided into 2 subgroups:tumor diameter more than 5cm and less than 10cm(GroupⅠ) and larger than 10cm(GroupⅡ).The starting radiation doses were 46Gy and 40Gy in 2Gy per fraction for GroupⅠand GroupⅡ,and up to a chosen maximum of 62 Gy and 52 Gy with 4.0 Gy increments of each cohort.Dose-limiting toxicity(DLT) was defined as acute≥Grade 3 liver,gastrointestinal toxicity,or any grade 5 treatment-related adverse event,or late complication of radiation-induced liver disease(RILD).
     Results:From April 2005 to May 2008,a total of 40 HCC patients were enrolled in this study(20 in GroupⅠand 20 in GroupⅡ).According to AJCC staging(2006), there were 20 cases of T2(Ⅱstage),17 cases of T3(ⅢA stage)and 3 cases of T4(ⅢB stage),respectively.The last follow-up was performed in January 2009 with the median follow-up time of 17.5months for GroupⅠand 9 months for GroupⅡ.The total median follow-up time was 13 months for all patients.Total 11(55.5%) patients (9 Grade 1 and 2 Grade 2) occurred acute treatment-related toxicities in GroupⅠand 10(50%) patients(8 Grade 1 and 2 Grade 2) in GroupⅡ.For all patients,only one nonclassic RILD was observed in 52Gy dose level of GroupⅡ,which occurred two months after completion of radiation treatment.After two weeks of symptomatic treatments,the patients died of hepatic failure eventually.4 patients developed in-field recurrence;21 patients had intrahepatic spreading;5 patients had extrahepatic metastases.The 2-year local control rate for all the patient was 90%.The 1,2 year overall survival rates was 72%and 62%for all the patients.
     Conclusions:The radiation dose was safely escalated in locally advanced HCC patients by using 3D-CRT/IMRT and ABC to 62Gy for patients with tumor diameter less than 10cm and 52Gy for tumor diameter equal or more than 10 cm under strict normal liver DVH constraints.The local control is satisfied with acceptable toxicities.
     Part 3:An experimental study of liver regeneration after liver irradiation on rats.
     Objective:To examine whether irradiated liver has the ability to regenerate after liver irradiation,and to investigate the timing of liver regeneration and the roles of participated cytokines on irradiated liver of rats.
     Material and Methods:Two parts were included in this study(PartⅠand PartⅡ).In PartⅠ,rats were randomly divided into 0-day-post radiation(sham-radiation), 30-day-post-radiation,60-day-post-radiation,90-day-post radiation and 120-day-post-radiation group according to time of sacrifice on rats,and each group had six rats.The right half liver was irradiated with a single fraction dose of 25Gy and left half with 5Gy using 6MV-X ray.In PartⅡ,all rats were sacrificed at the time of 60 days post irradiation and randomly divided into 5 groups.Sham-radiation group(0Gy) was also included.Other rats irradiated to right half liver with dose of 25Gy were randomly divided into 2.SGy,5Gy,7.5Gy,10Gy group according to the dose irradiated to left half liver,and each group also had six rats.All the rats were sacrificed at the scheduled time in each group of the two parts.Blood serum,right and left half liver tissue were collected.Hepatocyte growth factor(HGF),Alanine aminotranferease(ALT),aspartate aminotransferase(AST) and Prealbumin(PA) in blood serum were measured in each group.Mitotic index in liver tissue was assessed by H.E.staining.The expression of proliferation cell nuclear antigen(PCNA) and transforming growth factor-β1(TGF-β1) were confirmed by immunohistochemical staining.HGFmRNA,PCNAmRNA and TGF-β1mRNA were analysed quantificationally by real-time PCR.Proliferation index was determined by flow cytometry(FCM).
     Results:ALT and AST in blood serum of rats irradiated 25Gy to right half liver and 5Gy to the left escalated to their peak values at the time of 60 days after irradiation,and were 3.2 and 2.6 folds of normal level,respectively.PA in blood serum dropped to its peak value at the time of 60 days after irradiation,and was 0.4 folds of normal level.HGF in blood serum reached its peak at the time of 30 days after irradiation.Comparing to sham-radiation(0 day),60-day-post radiation, 90-day-post radiation and 120-day-post-radiation group,the differences were all significant(P<0.05).In the liver tissue irradiated 5Gy,HGFmRNA and TGF-β1mRNA increased to their peak values at the time of 30 days after irradiation, PCNAmRNA and Proliferation index at the time of 60 days after irradiation and mitotic index at the time of 90 days after irradiation.In the liver tissue irradiated 25Gy,HGFmRNA and TGF-β1mRNA augmented to their peak values at the time of 30 days after irradiation and PCNAmRNA at the time of 90 days after irradiation. Four rats in the group of right half liver irradiated 25Gy and left half 10Gy died between the first and the second week.In groups irradiating left half liver form 2.5Gy to 7.5Gy,the expression of AST,ALT,PCNAmRNA and TGF-β1mRNA increased significantly with the dose escalation(P<0.05).But there were no significant difference of PA and Mitotic index between groups mentioned above.Proliferation index in groups irradiating left half liver 5Gy and 7.5Gy showed no significant difference(P>0.05),but both were higher than that in group irradiating 2.5Gy (P<0.05).
     Conclusions:The liver tissue irradiated 25Gy still has regenerative potential; Irradiation can block the cell cycle of regenerative liver tissue and delay the course of liver regeneration;Rats can not tolerate the dose of 25Gy irradiated to right half liver and 10Gy to left half liver,and liver regeneration can not compensate for the acute injury of liver function in time.
引文
[1] Zeng ZC, Tang ZY, Fan J, et al. A comparison of chemoembolization combination with and without radiotherapy for unresectable hepatocellular carcinoma[J]. Cancer J, 2004, 10(5):307-316.
    
    [2] Wu DH, Liu L, Chen LH. Therapeutic effects and prognostic factors in three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma[J]. World J Gastroenterol, 2004, 10(15): 2184-2189.
    
    [3] Liang SX, Zhu XD, Lu HL, et al. Hypofractionated three -dimensional conformal radiation therapy for primary liver carcinoma[J]. Cancer, 2005, 103 (10):2181-2188.
    
    [4] Zhou ZH, Liu LM, Chen WW, et al. Combined therapy of transcatheter arterial chemoembolization and three-dimensional conformal radiotherapy for hepatocellular carcinoma[J]. The British Journal of Radiology, 2007, 80(951): 194-201.
    
    [5] Liang SX, Zhu XD, Xu ZY, et al. Radiation - induced liver disease in three - dimensional conformal radiation therapy for primary liver carcinoma : The risk factors and hepatic radiation tolerance[J]. Int J Radiat Oncol Biol Phys, 2006, 65 (2):426-434.
    
    [6] Semelka RC, Worawattanakul S, Kelekis NL, et al.Liver lesion detection, characterization, and effect on patient management: comparison of single-phase spiral CT and current MR techniques[J]. J Magn Reson Imaging, 1997, 7(6): 1040-1047.
    
    [7] Semelka RC, Martin DR, Balci C, et al. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement[J]. J Magn Reson Imaging, 2001,13 (3):397-401.
    
    [8] Yamashita Y, Mitsuzaki K, Yi T, et al. Small hepatocellular carcinoma in patients with chronic liver damage: prospective comparison of detection with dynamic MR imaging and helical CT of the whole liver [J]. Radiology, 1996,200 (1):79-84.
    
    [9] Braga L, Guller U, Semelka RC. Pre-, peri-, and posttreatment imaging of liver lesions [J]. Radiol Clin North Am, 2005,43 (5):915-927.
    
    [10] Hussain SM, Semelka RC. Hepatic imaging: comparison of modalities [J]. Radiol Clin North Am, 2005, 43 (5):929-947.
    
    [11] Khoo VS, Dearnaley DP, Finnigan DJ, et al. Magnetic resonance imaging(MRI): considerations and applications in radiotherapy treatment planning [J]. Radiother Oncol, 1997,42 (1):1-15.
    [12] Krempien RC, Daeuber S, Hensley FW, et al. Image fusion of CT and MRI data enables improved target volume definition in 3D-brachytherapy treatment planning [J]. Brachytherapy, 2003,2(3):164-171.
    
    [13] Glockner JF. Hepatobiliary MRI: current concepts and controversies [J]. J Maqn Reson Imaging, 2007, 25(4):681-695.
    
    [14]Khoo VS, Adams EJ, Saran F, et al. A Comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas [J]. Int J Radiat Oncol Biol Phys, 2000,46(5):1309-1317.
    
    [15] Ross CS, Hussey DH, Pennington EC, et al. Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography[J]. Int J Radiat Oncol Biol Phys, 1990,18 (3):671-677.
    
    [16] Kubo HD, Hill BC. Respiration gated radiotherapy treatment : A technical study[J]. Phys Med Biol, 1996,41(1):83-91.
    
    [17] Davies SC, Hill AL, Holmes RB, et al. Ultrasound quantitation of respiratory organ motion in the upper abdomen[J]. Br J Radiol, 1994,67 (803):1096-1102.
    
    [18] Shimizu S, Shirato H, Aoyama H, et al. High - speed magnetic resonance imaging for four - dimensional treatment planning of conformal radiotherapy of moving body tumors [J]. Int J Radiat Oncol Biol Phys, 2000,48(2):471-474.
    
    [19] Voroney JP, Brock KK, Eccles C, et al. Prospective comparison of computed tomography and magnetic resonance imaging for liver cancer delineation using deformable image registration [J]. Int J Radiat Oncol Biol Phys, 2006, 66 (3):780-791.
    [1] Lau WY, Lai EC. Hepatocellular carcinomaxurrent management and recent advances [J]. Hepatobiliary Pancreat Dis Int, 2008,7(3):237-257.
    
    [2] Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: GLOBOCAN 2000 [J]. Int J Cancer 2001, 94(2):153-156.
    
    [3] Bosch FX, Ribes J, Diaz M, et al. Primary liver cancer: worldwide incidence and trends [J]. Gastroenterology 2004, 127(5 Suppl 1): S5-16.
    
    [4] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002 [J]. CA Cancer J Clin, 2005, 55 (2):74-108.
    
    [5] Esnaola NF, Mirza N, Lauwers GY, et al. Comparison of clini-copathologic characteristics and outcomes after resection in patients with hepatocellular carcinoma treated in the United States, France, and Japan [J]. Ann Surg, 2003, 238 (5):711-719.
    
    [6] Ercolani G, Grazi GL, Ravaioli M, et al. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence [J]. Ann surg, 2003,237 (4):536-543.
    
    [7] Chen MF, Hwang TL, Jeng LB, et al. Hepatic resection in 120 patients with hepatocellular carcinoma [J]. Arch Surg, 1989,124 (3):1025-1028.
    
    [8] Venook AP. Treatment of hepatocellular carcinoma: too many options [J]. J Clin Oncol, 1994, 12 (6): 1323-1334.
    
    [9] Hawkins MA, Dawson LA. Radiation therapy for hepatocellular carcinoma: from palliation to cure [J]. Cancer, 2006,106 (8):1653-1663.
    
    [10] Seong J, Park HC, Han KH, et al. Local radiotherapy for unresectable hepatocellular carcinoma patients who failed with transcatheter arterial chemoembolization[J]. Int J Radiat Oncol Biol Phys, 2000, 47(5):1331-1335.
    
    [11] Park HC, Seong J, Han KH, et al. Dose - response relationship in local radiotherapy for hepatocellular carcinoma[J]. Int J Radiat Oncol Biol Phys 2002, 54(1):150-155.
    
    [12] Liu MT, Li SH, Chu TC, et al. Three-dimensional conformal radiation therapy for unresectable hepatocellular carcinoma patients who had failed with or were unsuited for transcatheter arterial chemoembolization[J]. Jpn J Clin Oncol, 2004, 34 (9): 532-539.
    
    [13] Wu DH, Liu L, Chen LH. Therapeutic effects and prognostic factors in three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma[J]. World J Gastroenterol. 2004,10 (15): 2184-2189.
    
    [14] Liang SX, Zhu XD, Xu ZY, et al. Radiation - induced liver disease in three - dimensional conformal radiation therapy for primary liver carcinoma : The risk factors and hepatic radiation tolerance[J]. Int J Radiat Oncol Biol Phys, 2006, 65(2):426-434.
    
    [15] Zeng ZC, Jiang GL, Wong GM, et al. DNA-Pkcs submits in radiosensitization by hyperthermia on hepatocellular carcinoma HepG2 cell line[J]. World J Gastroenterol, 2002, 8(5):797-803.
    
    [16] Park W, Lim DH, Paik SW, et al. Local radiotherapy for patients with unresectable hepatocellular carcinoma [J]. Int J Radiat Oncol Biol Phys, 2005, 61 (4):1143-1150.
    
    [17] Seong J, Park HC, Han KH, et al. Clinical results and prognostic factors in radiotherapy for unresectable hepatocellular carcinoma: a retrospective study of 158 patients[J]. Int J Radiat Oncol Biol Phys, 2003, 55 (2):329-336.
    
    [18] Dawson LA, McGinn CJ, Normolle D, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies [J]. J Clin Oncol, 2000,18 (11):2210-2218.
    
    [19] Schefter TE, Kavanagh BD, Timmerman RD, et al. A Phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases [J]. Int J Radiat Oncol Biol Phys, 2005,62(3):1371-1378.
    
    [20] Herfarth KK, Debus J, Wannenmacher M. Stereotactic radiation therapy of liver metastases: update of the initial phase-I/II trial [J]. Front Radiat Ther Oncol, 2004, 38:100-105.
    
    [21] Zeng ZC, Tang ZY, Fan J, et al. A comparison of chemoembolization combination with and without radiotherapy for unresectable hepatocellular carcinoma[J]. Cancer J, 2004, 10 (5):307-316.
    
    [22] Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control(ABC)to reduce margin for breathing motion[J]. Int J Radat Oncol Biol Phys, 1999, 44(4):911-919.
    
    [23] Eccles C, Brock KK, Bissonnette JP, et al. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy[J]. Int J Radat Oncol Biol Phys, 2006,64(3):751-759.
    
    [24] Zhao JD, Xu ZY, Zhu J, et al. Application of active breathing control in 3-dimensional conformal radiation therapy for hepatocellular carcinoma: the feasibility and benefit [J]. Radiother Oncol, 2008, 87(3):439-44.
    
    [25] Liang SX, Zhu XD, Lu HJ, et al. Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma [J]. Cancer, 2005,103 (10):2181-2188.
    
    [26] Zhou ZH, Liu LM, Chen WW, et al. Combined therapy of transcatheter arterial chemoembolization and three-dimensional conformal radiotherapy for hepatocellular carcinoma [J]. Br J Radiol, 2007, 80 (951):194-201.
    
    [27] Cheng SH, Lin YM, Chuang VP, et al. A pilot study of three-dimensional conformal radiotherapy in unresectable hepatocellular carcinoma [J]. J Gastroenterol Hepatol, 1999, 14 (10):1025-1033.
    
    [28] Lawrence TS, Ten Haken RK, Kessler ML, et al. The use of 3-D dose volume analysis to predict radiation hepatitis [J]. Int J Radiat Oncol Biol Phys, 1992, 23(4):781-788.
    
    [29] Ben-Josef E, Normolle D, Ensminger WD, et al. Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies [J]. J Clin Oncol, 2005,23 (34):8739-8747.
    
    [30] McGinn CJ, Ten Haken RK, Ensminger WD, et al. Treatment of intrahepatic cancers with radiation doses based on a normal tissue complication probability model [J]. J Clin Oncol, 1998,16 (6):2246-2252.
    
    [31] Xu ZY, Liang SX, Zhu J, et al. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma [J]. Int J Radiat Oncol Biol Phys, 2006, 65(1):189-195.
    [1] Liang SX, Zhu XD, Lu HJ, et al. Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma [J]. Cancer, 2005,103 (10):2181-2188.
    [2] Dawson LA, Normolle D, Baiter JM, et al. Analysis of radiation-induced liver disease using the Lyman NTCP model [J]. Int J Radiat Oncol Biol Phys, 2002, 53(4): 810-821.
    
    [3] Xu ZY, Liang SX, Zhu J, et al. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma [J]. Int J Radiat Oncol Biol Phys, 2006, 65(1):189-195.
    
    [4] Zhu J, Zhu XD, Liang SX, et al. Prediction of Radiation Induced Liver Disease Using Artificial Neural Networks [J]. Jpn J Clin Oncol, 2006, 36(12):783-788.
    
    [5] Higgins GM, Anderson RM. Experimental pathology of the liver.I. Restoration of the liver of the white rat following partial surgical removal[J]. Arch Pathol, 1931,12:186-202.
    
    [6] Marcos A, Fisher RA, Ham JM, et al .Liver regeneration and function in donor and recipient after right lobe adult to adult living donor liver transplantation[J]. Transplantation, 2000, 69 (7): 1375-1379.
    
    [7] Fausto N. Liver regeneration [J]. J Hepatol, 2000, 32 (1 Suppl):19-31.
    
    [8] Michalopoulos GK, DeFrances MC. Liver regeneration [J]. Science, 1997, 276(5309):60-66.
    
    [9] Taub R. Liver regeneration: from myth to mechanism [J]. Nat Rev, 2004, 5 (10):836-847.
    
    [10] Zimmermann A. Liver regeneration: the emergence of new pathways [J]. Med Sci Monit, 2002, 8(3): 53-63.
    
    [11] Ingold JA, Reed GB, Kaplan, et al. Radiation hepatitis [J]. Am J Roentgenol Radium Ther Nucl Med, 1965, 93:200-208.
    
    [12] Lewin K, Millis RR. Human radiation hepatitis. A morphologic study with emphasis on the late changes [J]. Arch Pathol, 1973, 96(1):21-26.
    
    [13] Reed GB, Cox AJ. The human liver after radiation injury. A form of veno-occlusive disease [J]. Am J Pathol, 1966,48(4):597 -611.
    
    [14] Dawson LA, McGinn CJ, Normolle D, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies [J]. J Clin Oncol, 2000, 18 (11):2210-2218.
    [15] Andrews AE, Goff JB. Regeneration of the liver after radiation therapy demonstrated by liver scanning [J]. J Ark Med Soc, 1973, 70(3):109-110.
    
    [16] Tokuuye K, Sumi M, Kagami Y, et al. Radiotherapy for hepatocellular carcinoma [J]. Strahlenther Onkol, 2000, 176(9): 406-410.
    
    [17] Ohara K, Okumura T, Tsuji H, et al. Radiation tolerance of cirrhotic livers in relation to the preserved functional capacity: analysis of patients with hepatocellular carcinoma treated by focused proton beam radiotherapy [J]. Int J Radiat Oncol Biol Phys, 1997,38(2):367-372.
    
    [18] Assy N, Minuk GY. Liver regeneration: methods for monitoring and their applications [J]. J Hepatol 1997,26(4):945-952.
    
    [19] Hall PA, Levison DA, Woods AL, et al. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms [J]. J Pathol, 1990, 162(4):285-294.
    
    [20] Wolf HK, Michalopoulos GK. Hepatocyte regeneration in acute fulminant and nonflilminant hepatitis: a study of proliferating cell nuclear antigen expression [J]. Hepatology,1992,15 (4):707-713.
    
    [21] Koenig S, Krause P, Schmidt TK,et al.Irradiation as preparative regimen for hepatocyte transplantation causes prolonged cell cycle block [J]. Int J Radiat Biol, 2008, 84(4), 285-298.
    
    [22] Diehl AM, Rai R. Review: regulation of liver regeneration by pro-inflammatory cytokines [J]. J Gastroenterol Hepatol, 1996, 11(5):466-470.
    
    [23] Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation [J]. Radiation Research, 1998,150(5 Suppl):S42-51.
    
    [24] Kaufmann WK, Paules RS. DNA damage and cell cycle checkpoints [J]. The FASEB Journal, 1996, 10 (2):238-247.
    
    [25] Hartwell LH, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events [J]. Science, 1989, 246 (4930):629-634.
    
    [26] Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepaocyte growth factor from serum of hepatectomized rats [J]. Biochem Biophys Res Comm,1984,122 (3): 1450-1459.
    
    [27] Nakamura T. Structure and function of hepatocyte growth factor [J ]. Prog Growth Factor Res, 1991, 3(1): 67-85.
    
    [28] Matsumoto K, Tajima H, HamanoueM, et al. Identification and characterizat ion of injurin", an inducer of expression of the gene for hepatocyte growth factor [J]. Proc Natl Acad Sci USA, 1992, 89(9): 3800-3804.
    
    [29] Shiota G, Wang TC, Nakamura T et al. Hepatocyte growth factor in transgenic mice: effects on hepatocyte growth, liver regeneration and gene expression[ J ]. Hepatology,1994,19 (4):962-972.
    
    [30] Yamazaki H, Matsumoto K, Inoue T, et al. Induction of hepatocyte factor in the liver, kidney and lung following total body irradiation in rat [J]. Cytokine, 1996, 8(12): 927-932.
    
    [31] Fausto N, Campbell JS, Riehle KJ. Liver regeneration [J]. Hepatology, 2006, 43(2 Suppl 1):45-53.
    
    [32] Anscher MS, Crocker IR, Jirtle RL. Transforming growth factor-beta 1 expression in irradiated liver. Radiation research, 1990, 122(1):77-85.
    
    [33] Seong J, Kim SH, Chung EJ, et al. Early alteration in TGF-beta mRNA expression in irradiated rat liver. Int J Radiat Oncol Biol Phys, 2000,46(3):639-43.
    
    [34] Ronco MT, Alvarez Mde L, Monti JA. Role of nitric oxide increase on induced programmed cell death during early stages of rat liver regeneration. Biochim Biophys Acta, 2004, 1690(1):70-76.
    [1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002 [J]. CA Cancer J Clin, 2005, 55 (2):74-108.
    
    [2] Chevret S, Trinchet JC, Mathieu D, et al. A new prognostic classification for predicting survival in patients with hepatocellular carcinoma. Group d'Etude et de Traitement du Carcinome Hepatocellulair [J]. J Hepatol,1999, 31(1):133-141.
    
    [3] Stuart KE, Anand AJ, Jenkins RL, et al. Hepatocellular carcinoma in the United States. Prognostic features, treatment outcome, and survival [J]. Cancer,1996,77(11):2217-2222.
    
    [4] Esnaola NF, Mirza N, Lauwers GY, et al. Comparison of clini-copathologic characteristics and outcomes after resection in patients with hepatocellular carcinoma treated in the United States,France,and Japan [J]. Ann Surg, 2003, 238 (5):711-719.
    
    [5] Ercolani G, Grazi GL, Ravaioli M, et al. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann surg,2003,237(4):536-543.
    
    [6] Voroney JP, Brock KK, Eccles C, et al. Prospective comparison of computed tomography and magnetic resonance imaging for liver cancer delineation using deformable image registration. Int J Radat Oncol Biol Phys, 2006, 66(3):780-791.
    
    [7] Mizowaki T, Nagata Y, Okajima K, et al. Development of a MR simulator: experimental verification of geometric distortion and clinical application. Radiology, 1996,199 (3):855-860.
    
    [8] Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control(ABC)to reduce margin for breathing motion[J]. Int J Radat Oncol Biol Phys,1999,44(4):911-919.
    
    [9] Eccles C, Brock KK, Bissonnette JP, et al. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy[J]. Int J Radat Oncol Biol Phys, 2006,64(3):751-759.
    
    [10] Zhao JD, Xu ZY, Zhu J, et al. Application of active breathing control in 3-dimensional conformal radiation therapy for hepatocellular carcinoma: the feasibility and benefit[J]. Radiother Oncol, 2008, 87(3):439-44.
    
    [11] Seong J, Keum KC, Han KH, et al. Combined transcatheter arterial chemoembolization and local radiotherapy of unresectable hepatocellular carcinoma[J]. Int J Radat Oncol Biol Phys, 1999,43(2):393-397.
    
    [12] Seong J, Park HC, Han KH, et al. Local radiotherapy for unresectable hepatocellular carcinoma patients who failed with transcatheter arterial chemoembolization[J]. Int J Radiat Oncol Biol Phys, 2000, 47(5):1331-1335.
    
    [13] Park HC, Seong J, Han KH, et al. Dose - response relationship in local radiotherapy for hepatocellular carcinoma [J]. Int J Radiat Oncol Biol Phys, 2002,54(1):150-155.
    
    [14] Liu MT, Li SH, Chu TC, et al. Three-dimensional conformal radiation therapy for unresectable hepatocellular carcinoma patients who had failed with or were unsuited for transcatheter arterial chemoembolization[J]. Jpn J Clin Oncol, 2004,34(9):532-539.
    
    [15] Zeng ZC, Tang ZY, Fan J, et al. A comparison of chemoembolization combination with and without radiotherapy for unresectable hepatocellular carcinoma[J]. Cancer J, 2004, 10 (5):307-316.
    
    [16] Seong J, Park HC, Han KH, Chon CY. Clinical results and prognostic factors in radiotherapy for unresectable hepatocellular carcinoma: a retrospective study of 158 patients [J]. Int J Radiat Oncol Biol Phys. 2003, 55(2):329-336.
    
    [17] Wu DH, Liu L, Chen LH. Therapeutic effects and prognostic factors in three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma [J]. World J Gastroenterol.2004;10(15): 2184-2189.
    
    [18] Guo WJ, Yu EX, Liu LM, et al. Comparison between chemoembolization combined with radiotherapy and chemoembolization alone for large hepatocellular carcinoma [J]. World J Gastroenterol, 2003, 9 (8): 1697-1701.
    
    [19] Park W, Lim do H, Paik SW, et al. Local radiotherapy for patients with unresectable hepatocellular carcinoma [J]. Int J Radiat Oncol Biol Phys, 2005,61(4):1143-1150.
    
    [20] Liang SX, Zhu XD, Lu HJ, et al. Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma [J]. Cancer, 2005,103 (10):2181-2188.
    
    [21] Zhou ZH, Liu LM, Chen WW, et al. Combined therapy of transcatheter arterial chemoembolization and three-dimensional conformal radiotherapy for hepatocellular carcinoma [J]. Br J Radiol, 2007, 80 (951): 194-201.
    
    [22] Hsu WC, Chan SC, Ting LL, et al. Results of three-dimensional conformal radiotherapy and thalidomide for advanced hepatocellular carcinoma [J]. Jpn J Clin Oncol, 2006, 36(2): 93-99.
    
    [23] Kim TH, Kim DY, Park JW, et al. Three-dimensional conformal radiotherapy of unresectable hepatocellular carcinoma patients for whom transcatheter arterial chemoembolization was ineffective or unsuitable.American Journal of Clinical Ontology,2006,29(6):568-575.
    [24]Mornex F,Girard N,Beziat C,et al.Feasibility and efficacy of high-dose three-dimensional-conformal radiotherapy in cirrhotic patients with small-size hepatocellular carcinoma non-eligible for curative therapies-mature results of the French phase Ⅱ RTF-1 trial[J].Int J Radiat Oncol Biol Phys,2006,66(4):1152-1158.
    [25]Liang SX,Zhu XD,Xu ZY,et al.Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma:The risk factors and hepatic radiation tolerance[J].Int J Radiat Oncol Biol Phys,2006,65(2):426-434.
    [26]Zeng ZC,Jiang GL,Wong GM,et al.DNA-Pkcs submits in radiosensitization by hyperthermia on hepatocellular carcinoma HepG2 cell line[J].World J Gastroenterol,2002,8(5):797-803.
    [27]Fisher DR,Hendry JH.Dose fractionation and hepatocyte clonogens:alpha/beta to 1-2,and beta decreases with increasing delay before assay[J].Radiat Res,1988,113(1):51-57.
    [28]Lawrence TS,Robertson JM,Anscher MS,et al.Hepatic toxicity resulting from cancer treatment[J].Int J Radiat Oncol Biol Phys,1995,31(5):1237-1248.
    [29]Reed G B,Cox A J.The human liver after radiation injury,a form of veno-occlusive disease[J].Am J Pathol,1966,48(4):597-611.
    [30]彭瑞云,王德文,杨德彪,等.放射性肝纤维化过程的定量研究[J].军事医学科学院院刊,1996,10(1):36-38.
    [31]Ahmadi T,Itai Y,Onaya H,et al.CT evaluation of hepatic injury for for following beam irradiation:appearance,enhancement,and 3-D size reduction pattern[J].J Comput Assist Tomogr,1999,23(5):655-663.
    [32]Yamasaki S A,Marn C S,Francis J R,et al.High2dose localized radiation therapy for treatment of hepatic malignant tumors:CT findings and their relation to radiation hepatitis[J].Am J Roentgenol,1995,165(1):79-84.
    [33]Unger EC,Lee JK,Weyman PJ.CT and MR imaging of radiation hepatitis.J Comput Assist Tomogr,1987,11(2):264-268.
    [34]Chiou S Y,Lee R C,Chi K H,et al.The triple-phase CT image appearance of post-irradiated livers[J].Acta Radiol,2001,42(5):526-531.
    [35]Wada H,Nemoto K,Majima K,et al.Computed tomography appearance of high-dose-irradiated hepatic parenchyma surrounding small tumors after stereotactic radiotherapy[J].Nippon Igaku Hoshasen Gakkai Zasshi,2002,62(10):549-556.
    [36]Kawamoto S,Soyer PA,Fishman EK,et al.Nonneoplastic liver disease:evaluation with CT and MR imaging[J].Radiographics,1998,18(4):827-848.
    [37]Stiskal M,Demsar F,Muhler A,et al.Contrast-enhanced MR imaging of two superparamagnetic RES-contrast agents:functional assessment of experimental radiation-induced liver injury[J].J Magn Reson Imaging,1999,10(1):52-56.
    [38]Morimoto N,Ebara M,Kato H,et al.Early detection of radiation induced liver injury In rat by superparamagnetic iron oxide-enhanced MR imaging[J].J Magn Reson Imaging,1999,9(4):573-578.
    [39]杨伟志.正常组织的放射损伤[A].沈瑜,糜福顺.肿瘤放射生物学[C].北京:中国医药科技出版社,2002,97.
    [40]Geraci JP,Mariano MS,Jackson KL.Hepatic radiation injury in the rat[J].Radiat Res,1991,125(1):65-68.
    [41]Ingkold JA,Reed GB,Kaplan HS,et al.Radiation hepatitis[J].Am J Roentgenol Radium Ther Nucl Med,1965,93:200-208.
    [42]Emami B,Lyman J,Brown A,et al.Tolerance of normal tissue to therapeutic irradiation[J].Int J Radiat Oncol Biol Phys,1991,21(1):109-122.
    [43]Kim TH,Kim DY,Park JW,et al.Dose-volumetric parameters predicting radiation-induced hepatic toxicity in unresectable hepatocellular carcinoma patients treated with three-dimensional conformal radiotherapy[J].Int J Radiat Oncol Biol Phys,2007,67(1):225-231.
    [44]Xu ZY,Liang SX,Zhu J,et al.Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma[J].Int J Radiat Oncol Biol Phys,2006,65(1):189-195.
    [45]Zhu J,Xu ZY,Liang SX,et al.Prediction of radiation induced liver disease using artificial neural networks[J].Jpn J Clin Oncol,2006,36(12):783-788.
    [1] Overturf K, al-Dhalimy M, Ou CN, et al. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes[J]. Am J Pathol, 1997,151(5):1273-1280.
    
    [2] Malik R, Selden C, Hodgson H. The role of non-parenchymal cells in liver growth[J]. Semin Cell Dev Biol, 2002, 13 (6): 425-431.
    
    [3] Higgins GM, Anderson RM. Experimental pathology of the liver.I. Restoration of the liver of the white rat following partial surgical removal[J]. Arch Pathol, 1931, 12:186-202.
    
    [4] Marcos A, Fisher RA, Ham JM, et al. Liver regeneration and function in donor and recipient after right lobe adult to adult living donor liver transplantation[J]. Transplantation, 2000, 69(7): 1375-1379.
    
    [5] Zimmermann A. Liver regeneration: the emergence of new pathways [J]. Med Sci Monit, 2002, 8(3): 53-63.
    
    [6] Fausto N. & Webber EM. Liver regeneration. In The Liver: Biology and Pathobiology (eds I. Arias, J. Boyer & N.Fausto), 1994, pp. 1059-1084. Raven, Press, New York.
    
    [7] Nagasue N, Yukaya H, Ogawa Y, et al. Human liver regeneration after liver resection. A study of normal livers and livers with chronic hepatitis and cirrhosis[J]. Ann Surg, 1987, 206 (1): 30-39.
    
    [8] Taub R. Liver regeneration 4: transcriptional control of liver regeneration[J].FASEB J, 1996, 10 (4): 413-427.
    
    [9] Zimmermann A. Regulation of liver regeneration[J]. Nephrol Dial Transplant, 2004, 19(4): 6-10.
    
    [10] Taub R. Liver regeneration: from myth to mechanism [J]. Nat Rev Mol Cell Biol, 2004, 5 (10): 836-847.
    
    [11] Shteyer E, Liao Y, Muglia LJ, et al. Disruption of hepatic adipogenesis is associated with impaired liver regeneration in mice[J]. Hepatology, 2004, 40 (6),1322-1332.
    
    [12] Rabes HM, Wirsching R, Tuczek HV, et al. Analysis of cell cycle compartments after partial hepatectomy[J ]. Cell Tissue Kinet, 1976, 9(6): 517-32.
    [13] Lou G, Zhang M, Minuk GY. The effects of acute ethanol exposure on polyamine and gamma-aminobutyric acid metabolism in the regenerating liver[J]. Alcohol, 1999, 19 (3): 219-227.
    [14] Huh C. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration repair[J ]. Proc Natl Acad Sci USA, 2004, 101 (13):4477-4482.
    
    [15] Scheving LA Stevenson MC, Taylormoore JM, et al. Integral role of the EGF receptor in HGF-mediated hepatocyte proliferation[J]. Biochem Biophys Res Commun. 2002,290 (1): 197-203.
    
    [16] Webber AM, Godowski PJ, Fasuto N. In vivo response of hepatocytes to growth factors requires an initial priming stimulus[J ]. Hepatology, 1994,19 (2): 489-497.
    
    [17] Teoh N, Leclercq I, Pena AD, et al. Low-dose TNF-alpha protects against hepatic ischemia reperfusion injury in mice : implications for preconditioning[J] . Hepatology, 2003, 37 (1):118-128.
    
    [18] Yamada Y, Webber EM, Kirillova I, et al. Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: requirement for type 1 but not type 2 receptor [J ]. Hepatology, 1998, 28 (4): 959-970.
    
    [19] Streetz KL, Luedde T, Manns MP, et al. Interleukin 6 and liver regeneration[J]. Gut, 2000,47(2): 309-312.
    
    [20] Cressman DE, Greenbaumm LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice[J]. Science, 1996, 274(5291): 1379-1383.
    
    [21] Fausto N, Laird AD, Webber E. Liver regeneration.2. Role of growth factors and cytokines in hepatic regeneration[J]. FASEB J, 1995, 9 (15): 1527-1536.
    
    [22] Ronco MT, Alvarez Mde L, Monti JA. Role of nitric oxide increase on induced programmed cell death during early stages of rat liver regeneration[J]. Biochim Biophys Acta, 2004,1690(1):70-76.
    
    [23] Polimeno L, Lisowsky T, Francavilla A, et al. Definition of different forms of augmenter of liver regeneration in normal and regenerating tissues[J]. J HEPATOL, 2003, 38(Suppl2):104-104.
    
    [24] Tanigawa K, Sakaida I, Masuhara M, et al. Augmenter of liver regeneration (ALR) may promote liver regeneration by reducing natural killer (N K) cell activity in human liver diseases. J Gastroenterol, 2000, 35 (2): 112-119.
    
    [25] Ochiai K, Muramatsu H, Yamamoto S. The role of midkine and pleiotrophin in liver regeneration. Liver Int, 2004, 24 (5):484-491.
    
    [26] Cruise JL, Houck KA, Michalopoulos GK. Induction of DNA synthesis in cultured rat hepatocytes through stimulation of alpha 1 adrenoreceptor by norepinephrine[J]. Science, 1985,227(4688): 749-751.
    
    [27] Cruise JL, Michalopoulos GK. Norepinephrine and epidermal growth factor:dynamics of their interaction in the stimulation of hepatocyte DNA synthesis [J ]. J Cell Physiol, 1985,125 (1): 45-50.
    
    [28] Houck KA, Michalopoulous GK. Altered responses of regenerating hepatocytes to norepinephrine and transforming growth factor type-beta [J]. J Cell Physiol, 1989,141(3): 503-509.
    
    [29] Starzl TE, Francavilla KA, Porter J, et al. Liver regeneration in dogs: morphologic and chemical changes[J ]. J Surg Res, 1978, 25(5):409-419.
    
    [30] Mack C, Jungermann K, Gotze O. Anaphylatoxin C5a actions in rat liver: synergistic enhancement by C5a of lipopolysaccharide-dependent alpha(2)-macroglobulin gene expression in hepatocytes via IL-6 release from Kupffer cells[J]. J Immunol, 2001,167(7): 3972-3979.
    
    [31] Puschel GP, Opperman M, Neuschafer-Rube F, et al. Differential effects of human anaphylatoxin C3a on glucose output and flow in rat liver during orthograde and retrograde perfusion: the periportal scavenger cell hypothesis[J]. Biochem Biophys Res Commun, 1991, 176 (3):1218-1226.
    
    [32] Laperche Y. Oval cells and liver regeneration [J]. Med Sci (Paris), 2003, 19 (6-7): 697-698.
    
    [33] Lowes KM, Croager EJ, Olynyk JK et al. Oval cell mediated liver regeneration: role of cytokines and growth factors[J ]. J Gastroenterol Hepatol, 2003, 18 (1): 4-12.
    
    [34] Fernandez MA, Albor C, Ingelmo-Torres M, et al. Caveolin-1 is essential for liver regeneration^ ]. Science, 2006, 313(5793): 628-632.
    
    [35] Terai S, Sakaida I, Yamamoto N, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes[J ]. J Biochem, 2003, 134(4), 551-558.
    
    [36] am Esch JS II, Knoefel TK, Klein M, et al. Portal application of autologous CD 133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration[J]. Stem Cells, 2005, 23(4), 463-470.
    
    [37] Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy [J]. Stem Cells, 2006, 24 (10), 2292-2298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700