用户名: 密码: 验证码:
阻断肾素血管紧张素系统对胰岛β细胞功能的效应及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     近年来肾素血管紧张素系统(RAS)与2型糖尿病的关系日益得到关注,RAS在胰岛β细胞功能障碍发生中的作用及其干预价值成为2型糖尿病防治研究的热点之一。本课题通过长期高脂高热量饮食构建胰岛素抵抗大鼠模型,以高脂饮食加小剂量链尿佐菌素(STZ)腹腔注射构建糖尿病大鼠模型,观察在糖尿病发病的不同阶段阻断RAS对胰岛β细胞功能的保护效应及机制,及其对STZ致糖尿病发生率的影响,并通过体外对β细胞系INS-1细胞的培养及处理,探讨RAS活化参与β细胞功能损害的分子机制。
     方法
     (1)阻断RAS对胰岛素抵抗大鼠胰岛β细胞功能的效应及机制,及其对STZ致糖尿病发生率的影响:90只8周龄雄性Wistar大鼠,随机分为正常对照组(n=15)和胰岛素抵抗造模组(n=75)。胰岛素抵抗造模组给予高脂高热量饮食喂养16周,随机分为高脂对照组(n=30),培哚普利干预组(n=15),替米沙坦干预组(n=30),共干预8周。为了观察在胰岛素抵抗阶段阻断RAS对STZ致糖尿病发生率的影响,分别从高脂对照组及替米沙坦干预组中随机选择15只大鼠作为高脂+小剂量STZ腹腔注射组(n=15)及替米沙坦干预+小剂量STZ腹腔注射组(n=15),禁食10-12h,以20mg/kg的剂量腹腔注射STZ,1周后以非同日2次随机血糖≥16.7mmol/1者为糖尿病大鼠,继续喂养1周。(2)阻断RAS对糖尿病大鼠胰岛β细胞功能的效应及机制研究:50只8周龄雄性Wistar大鼠随机分为正常对照组(n=10)和糖尿病造模组(n=40)。糖尿病组以高脂高热量饮食喂养8周后予小剂量STZ(30mg/kg)腹腔注射诱导糖尿病,纳入标准同上,随机分为糖尿病组(n=8)、ACEI干预组(n=10)、ARB干预组(n=10),共干预8周。(3) RAS参与β细胞功能损害的相关分子机制研究:体外培养β细胞系INS-1细胞,分别用不同浓度葡萄糖处理不同时间,观察其对INS-1细胞血管紧张素Ⅱ(AngⅡ)受体1(AT1R)表达的影响;用不同浓度的AngⅡ处理24h,观察其对INS-1细胞凋亡、功能以及胰岛素信号分子的影响。动物研究中胰岛结构、β细胞内胰岛素含量、胰岛细胞凋亡、炎症、氧化应激、胰岛微血管密度及RAS表达采用免疫组化或反转录聚合酶链反应(RT-PCR)法检测,胰岛功能采用静脉葡萄糖耐量试验(IVGTT)与静脉胰岛素释放试验(IVIRT)检测,胰岛素敏感性采用高胰岛素正葡萄糖钳夹试验检测;体外研究中INS-1细胞AT1R及胰岛素基因表达采用RT-PCR检测,细胞活性、凋亡及胰岛素信号分子分别采用MTT法、免疫荧光与流式细胞仪及western-blot法检测。
     结果
     1.胰岛素抵抗阶段阻断RAS对胰岛β细胞功能的效应及机制,及其对STZ致糖尿病发生率的影响
     1.1长期高脂高热量饮食喂养大鼠胰岛素敏感性及胰岛β细胞功能
     与正常对照组(NC,n=15)相比,高脂对照组(FC,n=15)稳态葡萄糖输注率(GIR)显著降低[(7.80±0.51)mg·kg~(-1)·min~(-1) vs(5.32±0.90)mg·kg~(-1)·min~(-1),P<0.01],说明FC组出现了明显的胰岛素抵抗;FC组胰岛增生肥大,胰岛内胰岛素相对含量(IRC)较NC组显著降低(P<0.01),提示FC组大鼠β细胞内胰岛素储备不足;胰岛素阳性细胞核密度(ICD)也有减少趋势,但是差异无统计学意义;葡萄糖负荷后第一时相胰岛素分泌高峰延迟,0-10min胰岛素曲线下面积(AUCI)低于NC组(P<0.01),但是10-60minAUCI超过NC组68.8%(P<0.01),提示FC组大鼠胰岛素第一时相分泌不足,而出现第二时相异常高分泌。
     1.2胰岛素抵抗大鼠胰岛内RAS表达、炎症反应及细胞凋亡
     与NC组比较,FC组AT1R mRNA相对表达量增加了1.16倍(P<0.01),白细胞介素1β(IL-1β)相对表达量增加了1.95倍(P<0.01),核因子κB(NF-KB)相对浓度增加了20.5%(P<0.01),胰岛内凋亡信号分子Caspase-3相对表达量增加了19.1%(P<0.01),单位胰岛面积TUNEL阳性细胞数增加了2.43倍(P<0.01)。
     1.3阻断RAS对胰岛素抵抗大鼠胰岛β细胞功能的影响
     药物干预后,培哚普利干预组(FP,n=15)、替米沙坦干预组(FT,n=15)IRC较FC组明显增加,分别为(-4.99±0.12)(P<0.05)与(-4.87±0.09)(P<0.01);ICD也有所增加,但是差异无统计学意义;AUCI(10-60)分别下降了15.6%、17.3%(均P<0.01),AUCI(0-10)及AUCI(0-60)也有所下降,但差异无显著性。说明阻断RAS具有增加胰岛素抵抗大鼠β细胞内胰岛素含量及部分改善胰岛素分泌模型的的效应。FP组、FT组之间差异均无显著性。
     1.4阻断RAS对胰岛素抵抗大鼠胰岛内炎症及细胞凋亡的效应
     与FC组相比,FP组、FT组胰岛内AT1R mRNA相对表达量明显降低(均P<0.01),IL-1β相对表达量降低了22.4%(P<0.05)、28.5%(P<0.01);NF-KB相对含量分别下降了20.1%、22.8%(均P<0.01);Caspase-3相对表达量分别降低了15.5%、17.7%(均P<0.01);单位胰岛面积TUNEL阳性细胞数分别下降了60.0%及67.4%(均P<0.01)。说明阻断RAS可以显著降低胰岛素抵抗大鼠胰岛内炎症反应及细胞凋亡水平。FP组、FT组之间差异均无显著性。
     1.5在胰岛素抵抗阶段阻断RAS对STZ致糖尿病发生率的影响
     与高脂+STZ腹腔注射组(FS,n=15)比较,替米沙坦干预+STZ腹腔注射组(TS,n=15)糖尿病的发生率显著降低,分别为80.0%(12/15)、33.3%(5/15)(P<0.05)。两组平均空腹血糖也有显著差异[(17.5±5.1)mmol/l vs(13.2±4.7)mmol/l,P<0.05]。
     2.糖尿病阶段阻断RAS对胰岛β细胞功能的效应及机制
     2.1高脂饮食加小剂量STZ腹腔注射构建的糖尿病大鼠模型胰岛结构与功能
     与正常对照组(NC,n=10)相比,糖尿病组(DM,n=8)大鼠胰岛形态不规则,边界模糊,结构紊乱,IRC显著下降(P<0.01);胰岛素第一时相分泌高峰延迟、峰值降低,AUCI(0-10)下降了67.0%(P<0.01),早期胰岛素分泌指数(EISI)降低了81.1%(P<0.01)。
     2.2糖尿病大鼠胰岛内RAS表达、氧化应激、微血管密度及细胞凋亡
     与NC组比较,DM组胰岛内血管紧张素原(AGT)mRNA表达显著增加(P<0.01);诱导型一氧化氮合酶(iNOS)相对浓度增加了10.3%(P<0.01),提示糖尿病状态下胰岛局部氧化应激反应增强;胰岛微血管密度(MVD)降低了71.4%(P<0.01),低氧诱导因子1α(HIF-1α)mRNA相对表达量增加了1.19倍(P<0.01),提示糖尿病大鼠胰岛处于相对或绝对乏氧状态;单位面积胰岛细胞凋亡数增加了2.14倍(P<0.01)。
     2.3阻断RAS对糖尿病大鼠胰岛β细胞功能的影响
     药物干预后,ACEI组(AE,n=10)、ARB组(AR,n=10)胰岛结构有所改善,IRC较DM组明显增加(均P<0.01),AUCI(0-10)分别增加了41.2%和33.1%(均P<0.01),EISI分别增加了1.84倍和1.74倍(均P<0.01),说明阻断RAS后糖尿病大鼠胰岛素第一时相分泌有所恢复。AE组、AR组之间差异均无显著性。
     2.4阻断RAS对糖尿病大鼠胰岛氧化应激、微血管密度及细胞凋亡的影响
     AE组和AR组胰岛内iNOS含量较DM组分别下降了16.5%、18.2%(均P<0.01);MVD分别增加了62.5%(P<0.05)与75.0%(P<0.01),HIF-1α基因表达分别下降了27.2%与29.0%(均P<0.01);单位面积胰岛凋亡细胞数分别下降了29.0%、36.2%(均P<0.01)。AE组、AR组之间差异均无显著性。
     3.RAS参与β细胞功能损害的相关分子机制
     3.1不同糖浓度处理不同时间INS-1细胞AT1R基因表达变化
     以5.6 mmol/l的葡萄糖(简称为5.6mG,下同)培养24h作为基础对照组,5.6mG培养48h AT1R mRNA表达无明显改变;16.7mG培养24h后AT1R mRNA表达增多,但差异无统计学意义,培养48h后AT1R mRNA表达较对照组增加了0.72倍(P<0.05);33.3mG培养24h,AT1R表达水平较对照组增加了1.33倍(P<0.01),培养48h后,AT1R mRNA表达水平进一步增加,为对照组的2.6倍(P<0.01)。
     3.2不同浓度AngⅡ处理24h对INS-1细胞胰岛素分泌功能的影响
     以5.6mG培养24h作为对照组,不同浓度(0.1、1、10、100nmol/1)AngⅡ处理组基础状态下的胰岛素分泌无明显改变,但葡萄糖刺激后胰岛素分泌(GSIS)分别较对照组下降了7.9%(P<0.05)、21.1%(P<0.01)、26.3%(P<0.01)和34.2%(P<0.01)。
     3.3不同浓度AngⅡ处理24h对INS-1细胞凋亡的影响
     分组同上,观察INS-1细胞的凋亡率变化。5.6mG培养48h,细胞凋亡率为5.7%,0.1 nmol/l AngⅡ培养24h组细胞凋亡率为10.3%,较对照组增加,但是差异无统计学意义,其余各组(1,10,100 nmol/l)随AngⅡ浓度增加,细胞凋亡率均显著增加(均P<0.01)。
     3.4不同浓度AngⅡ处理24h对INS-1细胞胰岛素信号分子的影响
     以5.6mG培养24h为对照组,未检测到磷酸化的胰岛素受体底物丝氨酸270位点(IRS-ser270)的表达,而加入不同浓度(0.1、100nmol/l)AngⅡ培养24h后,可检测到磷酸化IRS-ser270蛋白表达,其相对表达量分别为0.31,0.72(均P<0.01);0.1nmol/l AngⅡ处理24h后,蛋白激酶B丝氨酸473位点(PKB-ser473)磷酸化水平较对照组下降了20.1%(P<0.01),100nmol/l AngⅡ培养24h后,PKB-ser473磷酸化水平进一步降低,较对照组下降了30.2%(P<0.01)。
     结论
     RAS活化与糖尿病发病进程中胰岛β细胞功能损害密切相关,葡萄糖具有浓度及时间依赖性地上调胰岛RAS活性的效应。RAS活化可能通过诱发胰岛炎症反应、氧化应激、局部血流动力学异常、胰岛素受体后信号通路损害及细胞凋亡等机制损伤β细胞存活与功能。早期阻断RAS具有保护胰岛β细胞功能的作用,可以显著降低胰岛素抵抗大鼠STZ致糖尿病的发生率;在糖尿病阶段阻断RAS,对胰岛β细胞存活与功能仍然具有明显的保护效应。阻断RAS可能通过减轻胰岛炎症反应与氧化应激、改善胰岛微血流及β细胞胰岛素信号通路、减少胰岛细胞凋亡等机制保护或改善胰岛β细胞功能。
Objective
     Recently more and more attention has been payed to the relationship between reninangiotensin system(RAS) and type 2 diabetes. The role and its intervention value of RAS inthe development ofβcell dysfunction have become one of the research hot spots. Thisstudy aimed to investigate the effects of RAS blockade on isletβcell function in differentstages of type 2 diabetes, that is insulin resistance stage and overt diabetes stage, and itsimpact on the incidence of STZ-induced diabetes. This study also aimed to investigate themechanisms ofβcell dysfunction induced by RAS activation viaβcell line INS-1 cellscultivation and treatment in vitro.
     Methods
     (1) Effects and mechanisms of RAS blockade on isletβcell function in insulinresistance stage: Ninety 8-week male Wistar rats were randomly divided into normalcontrol group(n=15) and high fat diet group(n=75),which were given high fat diet for 16weeks and then divided into high fat contol group(n=30), perindopril intervention group(n=15) and telmisartan intervention group(n=30). Eight weeks later, to investigate theimpact of RSA blockade on the incidence of STZ-induced diabetes, fifteen rats wereselected randomly from high fat contol group and telmisartan intervention grouprespectively as high fat plus streptozotocin(STZ) intraperitoneal injection group(n=15) andtelmisartan plus STZ intraperitoneal injection group(n=15), which were given STZintraperitoneal injection at the dosage of 20mg/kg and whose random blood glucose was≥16.7mmol/l twice not in one day after one week were considered as diabetes. (2) Effectsand mechanisms of RAS blockade on isletβcell function in overt diabetic stage: Fifty8-week male Wistar rats were randomly divided into normal control group(n=10) anddiabetes model group(n=40), which were given high fat diet for 8 weeks and after that, STZ were intraperitoneal injected at the dosage of 30mg/kg. The diabetic criteria was asabove. Then the diabetic rats were divided into diabetes group(n=8), perindoprilgroup(n=10) and valsartan group(n=10), and treated for 8 weeks.(3)mechanisms ofβcelldysfunction induced by RAS activation:βcell line INS-1 cells were cultivated in vitro andtreated with glucose of different concentration for different time to investigate theexpression of AngiotensinⅡ(AngⅡ) receptor 1 (AT1R), and with AngⅡof differentconcentration for 24h to investigate its impact on the apoptosis, insulin signal moleculs andfunction of INS-1 cells. In animal experiments, the morphology of islet, insulin contentintraβcell, islet cell apoptosis, inflammation, oxidative stress, islet microvessel densityand RAS expression intra islet were detected by immunohistochemistry or RT-PCR. Theislet function was evaluated by intravenous glucose tolerance test(IVGTT). In vitro study,the expression of AT1R and insulin was detected by RT-PCR, the cytoactive, apoptosis andinsulin signal molecules were detected by MTT, immunofluorescence and flow cytometry,western-blot respectively.
     Results
     1. Effects and mechanisms of RAS blockade on isletβcell function ininsulin resistance stage
     1.1 insulin sensitivity and islet function of rats with long-term high fat diet
     In compared with normal control group(NC, n=15), the glucose infusion rate(GIR) ofhigh fat control group(FC, n=15) was decreased significantly[(7.80±0.51) mg*kg~(-1)*min~(-1)vs (5.32±0.90) mg*kg~(-1)*min~(-1), P<0.01], indicating that FC group appeared obviousinsulin resistance. The islets of FC group were enlarged with decreased insulin relativeconcentration(IRC) intraβcell (P<0.01).The insulin positive nucleus density(ICD) has adecreased tendency, but the variance was not statistically significant. Area under the curveof insulin(AUCI) from 0 to 10 min of FC group was lower in compared with that in NCgroup(P<0.01), while the AUCI from 10 to 60 min was increased by 68.8%(P<0.01),indicating the deficiency of insulin secretion in the first-stage and an abnormal highsecretion during the second-stage in FC group.
     1.2 expression of RAS, inflammatin and apoptosis intra islets of insulin resistance rats
     In compared with NC group, the relative expression of AT1R in FC group wasincreased by 1.16 times(P<0.01), the relative expression of IL-1βwas increased by 1.95folds(P<0.01), the relative content of NF-KB was increased by 20.5%(P<0.01), therelative concentration of Caspase-3 was increased by 19.1%(P<0.01), and the number ofapoptotic cells in unit area of islet was increased by 2.43 times(P<0.01).
     1.3 effects of RAS blockade on islet function in insulin resistance rats
     Aider intervention, the IRC of peridopril group(FP, n=15) and telmisartan group (FT,n=15) were all increased obviously(P<0.05 or P<0.01), the ICD was also increased, butthe variance was not statistically significant, AUCI(0-60) was decreased by 15.6% and17.3% respectively(all P<0.01), AUCI(0-10) and AUCI(0-60) were also decreased, but thedifferences were not statistically significant, too. There were no significant differencesbetween FP and FT group.
     1.4 effects of RAS blockade on inflammation and apoptosis intra islet in insulinresistance rats
     In compared with FC group, the relative expression of AT1R in FP and FT group wasreduced significantly(all P<0.01), the relative expression of IL-1βwas decreased by22.4%(P<0.05) and 28.5%(P<0.01) respectively, the relative content of NF-KB wasreduced by 20.1%, 22.8%(all P<0.01), the relative concentration of Caspase-3 wasdecreased by 15.5%, 17.7%(all P<0.01), and the number of apoptotic cells in unit area ofislet was reduced by 60.0%, 67.4%(all P<0.01). There were no significant differencesbetween FP and FT group.
     1.5 effects of RAS blockade in insulin resistance stage on the incidence ofSTZ-induced diabetes
     In compared with high fat plus STZ group(FS, n=15), the incidence of STZ-induceddiabetes of telmisartan plus STZ group(TS, n=15) was reduced signifcantly (P<0.05),which were 80%(10/15) and 33%(5/15) respetctively. The difference of fasting bloodglucose between FS and TS group was also significant [(17.5±5.1)mmol/l vs(13.2±4.7)mmol/l, P<0.05].
     2. Effects and mechanisms of RAS blockade on isletβcell function inovert diabetic stage
     2.1 islet function of diabetic rats induced by high fat diet plus STZ intraperitonealinjection
     In compared with normal control group(NC, n=10), the islets of diabetes group (DM,n=8) were enlarged with disarrayed architecture, and IRC was decreased obviously(P<0.01). First-phase insulin secretion, which was expressed as AUCI (0-10), was reducedby 67.0% (P<0.01) and the early insulin secretion index(EISI) was decreased by 81.8%(P<0.01).
     2.2 expression of RAS, oxidative stress, microvessel density and apoptosis intra islet ofdiabetic rats
     The relative expression of Angiotensinogen(AGT) mRNA of DM group was increasedsignificantly (P<0.01) in compared with that in NC group. The relative content of inducedNO synthase(iNOS), which reflected the oxidative stress in islet, was increased by 10.3%(P<0.01). The microvessel density(MVD) was decreased by 71.4% (P<0.01) with theincreased expression of hypoxia inducing factor1α(HIF-1α) by 1.19 folds (P<0.01). Thenumber of apoptotic cells in unit area of islet was increased by 2.14 times(P<0.01).
     2.3 effects of RAS blockade on islet function in diabetic rats
     After intervention, the IRC of ACEI group(AE, n=10) and ARB group(AR, n=10) wasall inreased obviously(P<0.01) with the islet morphology improved. AUCI(0-10) wasincreased by 41.2% and 33.1% respectively(all P<0.01), EISI was increased by 1.84 foldsand 1.74 folds(all P<0.01), indicating that the first-phase insulin secretion was partlyrestored. There were no significant differences between AE and AR group.
     2.4 effects of RAS blockade on oxidative stress, MVD and apoptosis intra islet indiabetic rats
     The relative concentration of iNOS in AE and AR group was decreased by 16.5 % and18.2% (all P<0.01) respectively in compared with that in DM group, the MVD wasincreased by 62.5% (P<0.05) and 75.0%(P<0.01) with the expression of HIF-1αdecreased by 27.2% and 29.0%(all P<0.01) respectively. The number of apoptotic cells in unit areaof islet was reduced by 29.0% and 36.2% (all P<0.01) respectively. There were nosignificant differences between AE and AR group.
     3. mechanisms ofβcell dysfunction induced by RAS activation
     3.1 expression of AT1R in INS-1 cells under different concentration glucose fordifferent time
     In compared with the expression of AT1R mRNA in INS-1 cells cultivated with 5.6mmol/l glucose for 24h(5.6mG(24h)), there was no significant difference in 5.6mG(48h)group. AT1R expression in 16.7mG(24h) group was increased, but the variance was notstatistically significant, while its expression in 16.7mG(48h) group was increase by 0.72times(P<0.05); in 33.3mG (24h) and 33.3mG (48h) group, its expression was inceased by1.33 times and 2.6 times (all P<0.01) respectively, indicating that with the increament ofglucose concentration and time, the expression of AT1R in INS-1 cells was also increasedaccordingly.
     3.2 insulin secretion function of INS-1 cells treated with AngⅡat differentconcentration for 24h
     In compared with 5.6mG(24h) group, the basic insulin secretion of differentconcentration AngⅡ(0.1/1/10/100nmol/l) treatment group was not changed significantly,but the glucose stimulating insulin secretion(GSIS) was decreased by 7.9%(P<0.05),21.1%(P<0.01), 26.3%(P<0.01) and 34.2%(P<0.01) respectively.
     3.3 apoptosis of INS-1 cells treated with AngⅡat different concentration for 24h
     The apoptosis rate was 5.7% in 5.6mG(24h) group, and 10.3% in the group with 0.1nmol/l AngⅡtreated for 24h, but the variance was not statistically significant. Theapoptosis rate in other groups(1/10/100nmol/l) was all increased significantly with theincreased concentration of AngⅡ.
     3.4 expression of insulin signal molecules of INS-1 cells treated with AngⅡat differentconcentration for 24h
     The expression of insulin receptor substrate serine270(IRS-ser270) phosphorylationwas not detected in the 5.6mG(24h) group, while its expression could be detected after treated with different concentration AngⅡ(0.1/100nmol/l)for 24h, that was 0.31 and0.72(all P<0.01) respectively. In compared with 5.6mG(24h) group, the expression ofprotein kinase B serine 473(PKB-ser473) phosphorylation was decreased by 20.1% and30.2%(all P<0.01) after treated with 0.1 nmol/l and 100 nmol/l AngⅡfor 24h respectively.
     Conclusions
     RAS had tight relation with pancreatic isletβcell dysfunction in the development ofdiabetes, glucose could up-regulate the activation of RAS intra islet depending on theconcentration and its duration. The activation of local RAS would provocate inflammation,oxidative stress, hemodynamics abnormality, apoptosis and insulin signal transductionimpairment intra islet, which ultimately induced damage toβcell survival and function. Toblock RAS in insulin resistance stage had protective effects on isletβcell function anddecreased the incidence of STZ-induced diabetes. Even in the stage of overt diabetes, RASblockade also had protective effects on isletβcell function. Its mechanisms may be thedecreased inflammtion and oxidative stress, the improvement of hemodynamics and insulinsignal transduction, and the reduced cell apoptosis intra islet.
引文
[1] Rhodes CJ. Type 2 diabetes - a matter of β cell life and death? Science. 2005; 307: 380-384.
    [2] Gillespie EL, White CM, Kardas M, et al. Effect of inhibition of the renin-Angiotensin system on development of type 2 diabetes mellitus (meta-analysis of randomized trials). Am J Cardiol. 2007; 99:1006-1012.
    [3] Bosch J, Yusuf S, Gerstein HC, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med.2006; 355:1551-1562.
    [4] Perkins JM, Davis SN. The renin-angiotensin-aldosterone system: a pivotal role in insulin sensitivity and glycemic control. Curr Opin Endocrinol Diabetes Obes. 2008;15:147-152.
    [5] Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR. Angiotensin Ⅱ and the development of insulin resistance: Implications for diabetes. Mol Cell Endocrinol. 2009; 302:128-139.
    [6] Eldor R, Yeffet A, Baum K, et al. Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A, 2006; 103: 5072-5077.
    [7] de Vinuesa SG, Goicoechea M, Kanter J, et al. Insulin Resistance, Inflammatory Biomarkers, and Adipokines in Patients with Chronic Kidney Disease: Effects of Angiotensin Ⅱ Blockade. J Am Soc Nephrol. 2006; 17: S206-S212.
    [8] Wei Y, Sowers JR, Clark SE, et al. Angiotensin Ⅱ-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab. 2008; 294:
    ??E345-E351.
    【9】 Villarreal RS, Alvarez SE, Ayub MJ, et al. AngiotensinII modulates tyr-phosphorylation of IRS-4,an insulin receptor substrate, in rat liver membranes. Mol Cell Biochem. 2006; 293: 35-46.
    【10】 Wolf G. Novel aspects of the renin-Angiotensin-aldosterone-system. Front Biosci. 2008; 13:4993-5005.
    【11】 Leung PS. The physiology of a local renin-Angiotensin system in the pancreas. J Physiol. 2007;580:31-37.
    【12】Fyhrquist F, Saijonmaa O. Renin-Angiotensin system revisited. J Intern Med. 2008; 264: 224-236.
    【13】Donath MY, Schumann DM, Faulenbach M, et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care. 2008, 31: S161 -S164.
    【14】 Y Kato, Y Miura, N Yamamoto, et al. Suppressive effects of a selective inducible nitric oxide synthase(iNOS) inhibitor on pancreatic beta-cell dysfunction. Diabetologia. 2003; 46: 1228-1233.
    【15】 Johansson M, Mattsson G, Andersson A, et al. Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology. 2006, 147: 2315-2324.
    【16】 Niessen M. On the role of IRS2 in the regulation of functional beta-cell mass. Arch Physiol Biochem. 2006; 112:65-73.
    【17】 Perkins JM, Davis SN. The renin-Angiotensin-aldosterone system: a pivotal role in insulin sensitivity and glycemic control. Curr Opin Endocrinol Diabetes Obes. 2008 ; 15:147-152.
    【18】Huang Z, Jansson L, Sjoholm A. Pancreatic islet blood flow is selectively enhanced by captopril,irbesartan and pravastatin, and suppressed by palmitat. Biochem Biophys Res Commun. 2006; 346:26-32.
    【19】Chipitsyna G, Gong Q, Gray CF,et al. Induction of monocyte chemoattractant protein-1 expression by angiotensin II in the pancreatic islets and beta-cells. Endocrinology. 2007; 148: 2198-2208.
    【20】 Leung PS. Mechanisms of protective effects induced by blockade of the renin-angiotensin system:novel role of the pancreatic islet angiotensin-generating system in Type 2 diabetes. Diabet Med. 2007 ;24: 110-116.
    [1] Leahy JL. Pathogenesis of type 2 diabetes mellitus. Arch Med Res. 2005; 36: 197-209.
    [2] Maiztegui B, Borelli MI, Raschia MA, et al. Islet adaptive changes to fructose-induced insulin resistance: beta-cell mass, glucokinase, glucose metabolism, and insulin secretion. J Endocrinol. 2009;200: 139-149.
    [3] Jetton TL, Lausier J, LaRock K, et al. Mechanisms of compensatory beta-cell growth in insulin-resistant rats: roles ofAkt kinase. Diabetes. 2005;54: 2294-2304.
    [4] Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006; 444:881-887.
    [5] Donath MY, Schumann DM, Faulenbach M, et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care. 2008; 31: S161-S164.
    [6] Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J.2004 ; 382:393-409.
    [7] Gillespie EL, White CM, Kardas M, et al. The impact of ACE inhibitors or Angiotensin Ⅱ type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care. 2005; 28:2261-2266.
    [8] Bosch J, Yusuf S, Gerstein HC, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med.2006; 355: 1551-1562.
    [9] 张贝,袁莉,曹玲玲,等.长期高脂饲养大鼠胰岛形态功能改变与外周胰岛素抵抗的关系.中华内分泌代谢杂志.2006;22:467-471.
    [10] Rouyer O, Zoll J, Daussin F, et al. Effect of Angiotensin-converting enzyme inhibition on skeletal muscle oxidative function and exercise capacity in streptozotocin-induced diabetic rats. Exp Physiol.2007; 92: 1047-1056.
    [11] Sch(a丨¨)fer A, Flierl U, Vogt C, et al. Telmisartan improves vascular function and reduces platelet activation in rats with streptozotocin-induced diabetes mellitus. Pharmacol Res. 2007; 56:217-223.
    [12] 李新,袁莉,徐国玲,等.阻断肾素血管紧张素系统通过下调iNOS改善糖尿病大鼠胰岛功能.中华内分泌代谢杂志.2008:24:43-47.
    [13] Pinnick KE, Collins SC, Londos C, et al. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition.Obesity (Silver Spring). 2008; 16: 522-530.
    [14] 谷成英,袁莉,唐兆生,等.运动对2型糖尿病大鼠胰岛细胞形态与功能的影响.中华物理医学与康复杂志.2005;27:145-148.
    [15] Sabek OM, Cowan P, Fraga DW, et al. The effect of isolation methods and the use of different enzymes on islet yield and in vivo function.Cell Transplant. 2008; 17: 785-792.
    【16】Ribeiro-Oliveira A Jr, Nogueira AI, Pereira RM, et al. The renin-Angiotensin system and diabetes:an update.Vasc Health Risk Manag. 2008; 4: 787-803.
    【17】Leung PS. The physiology of a local renin-Angiotensin system in the pancreas. J Physiol. 2007;580:31-37.
    【18】Fyhrquist F, Saijonmaa O. Renin-Angiotensin system revisited. J Intern Med. 2008; 264: 224-236.
    【19】 Chipitsyna G, Gong Q, Gray CF, et al. Induction of monocyte chemoattractant protein-1 expression by Angiotensin II in the pancreatic islets and beta-cells. Endocrinology. 2007; 148:2198-2208.
    【20】Fukushima M, Usami M, Ikeda M, et al. Insulin secretion and insulin sensitivity at different stages of glucose tolerance: a cross-sectional study of Japanese type 2 diabetes. Metabolism, 2004; 53:831-835.
    【21】Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat die-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res.2005; 52: 313-320.
    【22】 Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity.Curr Pharm Des. 2008; 14: 1225-1230.
    【23】Cefalu WT. Inflammation, insulin resistance, and type 2 diabetes: back to the future? Diabetes.2009;58: 307-308.
    【24】 Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol. 2005; 46: 1978-1985.
    【25】Sirois C, Poirier P, Moisan J, et al. The benefit of aspirin therapy in type 2 diabetes: what is the evidence? Int J Cardiol. 2008; 129: 172-179.
    【26】Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-inducedinsulin resistance.Nat Med.2005;11:191-198.
    【27】Eldor R, Yeffet A, Baum K, et al. Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A, 2006; 103: 5072-5077.
    【28】Shah A, Mehta N, Reilly MR Adipose inflammation, insulin resistance, and cardiovascular disease.JPEN J Parenter Enteral Nutr. 2008; 32: 638-644.
    【29】Tordjman J, Guerre-Millo M, Clement K. Adipose tissue inflammation and liver pathology in human obesity. Diabetes Metab. 2008; 34: 658-663.
    【30】 Song MJ, Kim KH, Yoon JM, et al. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun, 2006; 346: 739-745.
    【31】 Li N, Frigerio F, Maechler P. The sensitivity of pancreatic beta-cells to mitochondrial injuries
    ??triggered by lipotoxicity and oxidative stress. Biochem Soc Trans. 2008; 36: 930-934.
    【32】 Cunha DA, Hekerman P, Ladriere L, et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci. 2008; 121: 2308-2318.
    【33】 Oprescu AI, Bikopoulos G, Naassan A, et al. Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes.2007; 56: 2927-2937.
    【34】 Yuan L, An HX, Deng XL, et al. Rosiglitazone reverses insulin secretion altered by chronic exposure to free fatty acid via IRS-2-associated phosphatidylinositol 3-kinase pathway. Acta Pharmacol Sin. 2003; 24: 429-434.
    【35】 Alstrup KK, Brock B, Hermansen K. Long-Term exposure of INS-1 cells to cis and trans fatty acids influences insulin release and fatty acid oxidation differentially. Metabolism. 2004; 53: 1158-1165.
    【36】 Yoshikawa H, Tajiri Y, Sako Y, et al. Effects of free fatty acids on p-cell functions: a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox.Metabolism. 2001; 50: 613-618
    【37】 Campbell DJ.A review of Perindopril in the reduction of cardiovascular events.Vasc Health Risk Manag. 2006; 2: 117-124.
    【38】 Kintscher U, Foryst-Ludwig A, Unger T. Inhibiting Angiotensin type 1 receptors as a target for diabetes. Expert Opin Ther Targets. 2008; 12: 1257-1263.
    【39】 Takai S, Jin D, Kimura M, et al. Inhibition of vascular Angiotensin converting enzyme by telmisartan via the peroxisome proliferator-activated receptor gamma agonistic property in rats.Hypertens Res. 2007; 30: 1231-1237.
    【40】 Goodfriend TL, Kelley DE, Goodpaster BH, et al. Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res. 1999; 7: 355-362.
    【41】 Conn JW. Hypertension, the potassium ion and impaired carbohydrate tolerance. N Engl J Med.1965; 273:1135-1143.
    【42】 Corry DB, Tuck ML. The effect of aldosterone on glucose metabolism. Curr Hypertens Rep. 2003;5:106-109.
    【43】 Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension.2007;50:750-755.
    【1】 Ballian N, Brunicardi FC. Islet vasculature as a regulator of endocrine pancreas function. World J Surg. 2007; 31: 705-714.
    【2】Li X, ZhAng L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006; 55: 2965-2973.
    【3】Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008; 1147: 37-52.
    【4】 Xu J, Long YS, Gozal D, et al. beta-cell death and proliferation after intermittent hypoxia: Role of oxidative stress. Free Radic Biol Med. 2009; 46: 783-790.
    【5】 Savoia C, Schiffrin EL. Inhibition of the renin Angiotensin system: implications for the endothelium. Curr Diab Rep. 2006; 6: 274-278.
    【6】 Yokusoglu M, Sag C, Cincik M, et al. Perindopril, atenolol, and amlodipine prevent aortic ultrastructural chAnges in rats exposed to ethanol. Med Sci Monit. 2008; 14: 96-102
    【7】 WAng T, Yin KS, Liu KY, et al. Effect of valsartan on the expression of Angiotensin Ⅱ receptors in the lung of chronic antigen exposure rats. Chin Med J (Engl). 2008; 121: 2312-2319.
    【8】 Cheng Y, Liu YF, ZhAng JL, et al. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J Gastroenterol. 2007;13:2862-2866.
    【9】 Pipeleers D, Chintinne M, Denys B, et al. Restoring a functional beta-cell mass in diabetes.Diabetes Obes Metab. 2008 Nov;10 Suppl 4:54-62.
    【10】 Hasegawa G, Fukui M, Hosoda H, et al. Telmisartan, an Angiotensin Ⅱtype 1 receptor blocker,prevents the development of diabetes in male Spontaneously Diabetic Torii rats. Eur J Pharmacol. 2009;605: 164-169.
    【11】 Gillespie EL, White CM, Kardas M, et al. The impact of ACE inhibitors or Angiotensin Ⅱ type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care. 2005; 28:2261-2266.
    【12】 Harker CT, O'Donnell MP, Kasiske BL, et al. The rennin Angiotensin system in the type Ⅱ diabetic obese Zucker rat. J Am Soc Nephrol, 1993; 4: 1354-1361.
    【13】Rincon-Choles H, Kasinath BS, Gorin Y, et al. Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney Int Suppl. 2002; 82: 8-11.
    【14】 WAng XP. ZhAng R, Wu K, et al. Angiotensin II mediates acinar cell apoptosis during the development of rat pancreatic fibrosis by AT1R. Pancreas. 2004; 29: 264-270.
    【15】 Zanone MM, Favaro E, Doublier S, et al. Expression of nephrin by human pancreatic islet endothelial cells. Diabetologia. 2005; 48: 1789-1797.
    【16】 Brissova M, Shostak A, Shiota M, et al. Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function. Diabetes. 2006; 55:2974-2985.
    【17】 Johansson M, Carlsson PO, Bodin B, et al. Acute effects of a 50% pancreatectomy on total pancreatic and islet blood flow in rats. Pancreas. 2005; 30: 71-75.
    【18】 Carlsson PO, Olsson R, Kallskog O, et al. Glucose-induced islet blood flow increase in rats:interaction between nervous and metabolic mediators. Am J Physiol Endocrinol Metab. 2002; 283:E457-E464.
    【19】 HuAng Z, Sjoholm A. Ethanol acutely stimulates islet blood flow, amplifies insulin secretion, and induces hypoglycemia via nitric oxide and vagally mediated mechanisms. Endocrinology. 2008; 149:232-236.
    【20】 Jansson L, Kullin M, Karlsson FA, et al. K(ATP) channels and pancreatic islet blood flow in anesthetized rats: increased blood flow induced by potassium channel openers. Diabetes. 2003; 52:2043-2048.
    【21】 Carlsson PO, Berne C, Ostenson CG, et al. Hypoglycaemia induces decreased islet blood perfusion mediated by the central nervous system in normal and Type 2 diabetic GK rats. Diabetologia.2003; 46:1124-1130.
    【22】 Arena S, Pattarozzi A, Corsaro A, et al. Somatostatin receptor subtype dependent regulation of nitric oxide release: involvement of different intracellular pathways. Mol Endocrinol. 2005; 19: 255-267.
    【23】 Svensson AM, Ostenson CG, Bodin B, et al. Lack of compensatory increase in islet blood flow and islet mass in GK rats following 60% partial pancreatectomy. J Endocrinol. 2005; 184: 319-327.
    【24】 Iwase M, Nakamura U, Uchizono Y, et al. Nateglinide, a non-sulfonylurea rapid insulin secretagogue, increases pancreatic islet blood flow in rats. Eur J Pharmacol. 2005. 518: 243-250.
    【25】 Siekmeier R, Grammer T, Marz W. Roles of oxidants, nitric oxide, and asymmetric dimethylarginine in endothelial function. J Cardiovasc Pharmacol Then 2008; 13: 279-297.
    【26】 Wu-Wong JR. Endothelial dysfunction and chronic kidney disease: treatment options. Curr Opin Investig Drugs. 2008; 9: 970-982.
    【27】 Semenza GL. Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1. Exp Physiol. 2007; 92: 988-991.
    【28】 Kamba T, Tarn BY, Hashizume H, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol. 2006; 290: H560-H576.
    【29】Johansson M, Mattsson G, Andersson A, et al. Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology. 2006; 147: 2315-2324.
    【30】 Nikolova G, Jabs N, Konstantinova I, et al. The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell. 2006; 10: 397-405.
    【31】 Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008; 295:C849-C868.
    【32】 Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res. 2007; 4: 63-71.
    【33】 PO Carlsson, F Palm, A Andersson, et al. Markedly decreased oxygen tension in transplanted rat pancreatic islet irrespective of the implantation site. Diabetes. 2001; 50: 489-495.
    【34】 SP Ip, Y W Chan, CT Che, et al. Effects of chronic hypoxia on glutathione status and membuane integrity in the pancreas. Pancreatology. 2002; 2: 34-39.
    【35】 Henningsson R, Salehi A, Lundquist I. Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am JPhysiol Cell Physiol. 2002; 283: C296-C304.
    【36】 Y Kato, Y Miura, N Yamamoto, et al. Suppressive effects of a selective inducible nitric oxide synthase(iNOS) inhibitor on pancreatic beta-cell dysfunction. Diabetologia. 2003; 46: 1228-1233.
    【37】Oyadomari S, Takeda K, Takiguchi M, et al. Nitric oxide-induced apoptosis in pancreatic β cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA. 2001; 98: 10845-10850.
    【38】 Eiichi A, Seiichi O, Masatak M. Impact of Endoplasmic Reticulum Stress Pathway on Pancreatic β-Cells and Diabetes Mellitus. Exp Biol Med (Maywood). 2003; 228: 1213-1217.
    [1] Pattaranit R, van den Berg HA, Spanswick D. The development of insulin resistance in Type 2 diabetes: insights from knockout studies. Sci Prog. 2008; 91: 285-316.
    [2] Leibiger IB, Berggren PO. Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr. 2008; 28:233-251.
    [3] Scharfmann R, Duvillie B, Stetsyuk V, et al. Beta-cell development: the role of intercellular signals.Diabetes Obes Metab. 2008 ; 10: 195-200.
    [4] Lingohr MK, Dickson LM, Wrede CE, et al. Decreasing IRS-2expression in pancreaticβ-cells(INS-1) promotes apoptosis, which can be compensated for by introduction of IRS-4 expression. Mol Cell Endocrinol. 2003; 209: 17-31.
    [5] Taniyama Y, Hitomi H, Shah A, et al. Mechanism of reactive oxygen species-dependent down-regulation of insulin receptor substrate-1 by Angiotensin Ⅱ. Arterioscler Thromb Vasc Biol. 2005;25:1142-1147.
    [6] Zick Y. Role of Ser/Thr kinases in the uncoupling of insulin signaling. Relat Metab Disord. 2003;27: S56-S60.
    [7] 李新,袁莉,徐国玲,等.阻断肾素血管紧张素系统通过下调iNOS改善糖尿病大鼠胰岛功能.中华内分泌代谢杂志.2008;24:43-47.
    [8] Lau T, Carlsson PO, Leung PS. Evidence for a local Angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by Angiotensin Ⅱ in isolated pancreatic islets. Diabetologia. 2004; 47: 240-248.
    [9] Rhodes CJ. Type 2 diabetes-a matter of β-ceil life and death? Science. 2005; 307: 380-384.
    [10] Muthumala A, Gable DR, Palmen J, etal. Is the influence of variation in the ACE gene on the prospective risk of Type 2 diabetes in middle-aged men modified by obesity? Clin Sci (Lond). 2007; 113:467-472.
    [11] Gillespie EL, White CM, Kardas M, et al. The impact of ACE inhibitors or Angiotensin Ⅱ type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care. 2005; 28:2261-2266.
    [12] Bosch J, Yusuf S, Gerstein HC, etal. Effect of ramipril on the incidence of diabetes. N Engl J Med.2006; 355: 1551-1562.
    [13] Tikellis C, Cooper ME, Thomas MC. Role of the renin-Angiotensin system in the endocrine pancreas: implications for the development of diabetes. Int J Biochem Cell Biol. 2006; 38:737-751.
    [14] Ip SP, Chan YW, Leung PS. Effects of chronic hypoxia on the circulating and pancreatic renin-Angiotensin system. Pancreas. 2002; 25: 296-300.
    【15】 Peti-Peterdi J, KAng JJ, Toma I. Activation of the renal renin-Angiotensin system in diabetes-new concepts.Nephrol Dial Transplant. 2008; 23: 3047-3049.
    【16】 Tikellis C,Wookey PJ,Candido R,et al.Improvement islets morphology after blockade of the rennin-Angiotensin system in the ZDF rat. Diabetes. 2004; 53: 989-997.
    【17】 Addison S, Stas S, Hayden MR, et al. Insulin resistance and blood pressure. Curr Hypertens Rep.2008; 10:319-325.
    【18】 Csiszar A, WAng M, Lakatta EG, et al. Inflammation and endothelial dysfunction during aging:role of NF-kappaB. J Appl Physiol. 2008 ; 105: 1333-1341.
    【19】 HuAng Z, Jansson L, Sjoholm A. Pancreatic islet blood flow is selectively enhanced by captopril,irbesartan and pravastatin, and suppressed by palmitat. Biochem Biophys Res Commun. 2006; 346:26-32.
    【20】 Chipitsyna G, Gong Q, Gray CF, et al. Induction of monocyte chemoattractant protein-1 expression by Angiotensin II in the pancreatic islets and beta-cells. Endocrinology. 2007; 148:2198-2208.
    【21】 Musi N, Goodyear LJ. Insulin resistance and improvements in signal transduction. Endocrine.2006; 29: 73-80.
    【22】 Villarreal RS, Alvarez SE, Ayub MJ, et al. AngiotensinII modulates tyr-phosphorylation of IRS-4,an insulin receptor substrate, in rat liver membranes. Mol Cell Biochem. 2006; 293: 35-46.
    【23】 Shiuchi T, Iwai M, Li HS, et al. Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice . Hypertension. 2004; 43: 1003-1010.
    【24】 Park JL, Loberg RD, Duquaine D, et al. GLUT4 Facilitative Glucose Transporter Specifically and Differentially Contributes to Agonist-Induced Vascular Reactivity in Mouse Aorta. Arterioscler Thromb Vasc Biol. 2005; 25: 1596-1602.
    【25】 Takamoto I, Terauchi Y, Kubota N, et al. Crucial role of insulin receptor substrate-2 in compensatory beta-cell hyperplasia in response to high fat diet-induced insulin resistance. Diabetes Obes Metab. 2008; 10: 147-156.
    【26】 Melissa K Lingohr, Isabelle Briaud, Lorna M. Specific Regulation of IRS-2 Expression by Glucose in Rat Primary Pancreatic Islet Cells. J Biol Chem. 2006; 281: 15884-15892.
    【27】 Burks DJ, White MR IRS proteins and beta cell function. Diabetes. 2001; 50 : S140-S145.
    【28】 Ohne Y, Toyoshima Y, Kato H, et al. Disruption of the availability of amino acids induces a rapid reduction of serine phosphorylation of insulin receptor subtrate-1 in vivo and in vitro. Biosci Biotechnol Biochem. 2005; 69: 9889-9898.
    【29】 Fiaschi-Taesch N, Stewart AF, Garcia-Oca(?)a A. Improving islet transplantation by gene delivery
    ??of hepatocyte growth factor (HGF) and its downstream target, protein kinase B (PKB)/Akt. Cell Biochem Biophys. 2007;48:191-199.
    【30】 Hamming I, Cooper ME, Haagmans BL, et al. The emerging role of ACE2 in physiology and disease. J Pathol. 2007; 212: 1-11.
    【31】 Oudit GY, Crackower MA, Backx PH, et al. The role of ACE2 in cardiovascular physiology.Trends Cardiovasc Med. 2003; 13: 93-101.
    【32】 Santos RAS, Ferreira AJ. Angiotensin-(1-7) and the renin-Angiotensin system. Curr Opin Nephrol Hypertens. 2007; 16: 122-128.
    【33】 Guo YJ, Li WH, Wu R, et al. ACE2 Overexpression Inhibits Angiotensin II-induced Monocyte Chemoattractant Protein-1 Expression in Macrophages. Arch Med Res. 2008; 39: 149-155.
    【34】 Bernstein KE. Physiology: Two ACEs and a heart. Nature. 2002; 417: 799-802.
    【35】 Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: a new paradigm.Trends Endocrinol Metab. 2007; 18: 208 -214.
    【36】 Singh VP, Le B, Bhat VB, et al. High glucose induced regulation of intracellular angiotensin II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007; 293:H939-H948.
    【37】 Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2008; 17: 168 -173.
    【38】 Singh VP, Le B, Khode R, et al. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008 ; 57:3297-3306.
    【1】Fyhrquist F, Saijonmaa O. Renin-Angiotensin system revisited. J Intern Med. 2008; 264: 224-236.
    【2】PS.Leung, Chappell MC. A local pancreatic rennin Angiotensin system: endocrine and exocrine roles. Int J Bilchem cell Bid. 2003; 35: 838-846.
    【3】 PS Leung. PO Carlsson. Tissue rennin Angiotensin system: its expression, location, regulation and potential role in the pancreas. J Mol Endocrin. 2001; 26: 155-164.
    【4】 Otte M, Spier A. The Renin-Angiotensin-Aldosterone System: Approaches to Cardiac and Renal Therapy. Compend Contin Educ Vet. 2009; 31: E1-E7.
    【5】 Iravanian S, Dudley SC Jr. The renin-Angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm. 2008; 5: S12-S17.
    【6】 Verdecchia P, Angeli F, Mazzotta G, et al. The renin Angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction. Vasc Health Risk Manag. 2008; 4: 971-981.
    【7】 Katovich MJ, Grobe JL, Raizada MK. Angiotensin-(1-7) as an antihypertensive, antifibrotic target.Curr Hypertens Rep. 2008; 10: 227-232.
    【8】 Donoghue M, Hsieh F, Baronas E, et al. A novel Angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts Angiotensin Ⅰ to Angiotensin 1-9. Circ Res. 2000; 87: E1-E9.
    【9】 MC Chapperll, DI Diz, PE Gallagher. The rennin Angiotensin system and the exocrine pancrease.JOP. 2001; 2: 33-39.
    【10】 Sermia C. A critical appraisal of the intrinsic pancreatic Angiotensin-generating system. J Pancreas. 2001; 2: 50-55.
    【11】 Lau T, Carlsson PO, Leung PS. Evendence for a local Angiotensin and dose-dependent inhibition of glucose-stimulated insulin release by aniotensin Ⅱ in sisolated pancreatic islets. Diabetologia. 2004;47: 240-248.
    【12】 Wong PF, Lee SST, Cheung WT. Immunohistochemical colocalization of type 2 Angiotensin receptors with somatostatin in rat pancreas. Regul Pept, 2004; 117: 195-205.
    【13】 Mattsson G, Jasson L, Nordin A, et al. Impaired revascularization of transplanted mouse pancreatic islets is chronic and glucose-independent. Transplantation. 2003; 75: 736-739.
    【14】 Rush J W, Aultman CD. Vascular biology of angiotensin and the impact of physical activity. Appl Physiol Nutr Metab. 2008; 33: 162-172.
    【15】 Ip SP, Chan YW, Leung PS. Effects of chronic hypoxia on the circulating and pancreatic renin-Angiotensin system. Pancreas. 2002; 25: 296-300.
    【16】 Fiaschi-Taesch N, Stewart AF, Garcia-Oca(?)a A. Angiotensin Ⅱ and growth factors in the pathogenesis of diabetic nephropathy. Kidney Int Suppl. 2002; 82:8-11.
    [17] Tikellis C, Wookey PJ, Candido R, et al. Improvement islets morphology after blockade of the rennin-Angiotensin system in the ZDF rat. Diabetes. 2004; 53: 989-997.
    [18] 李新,袁莉,徐国玲,等.阻断肾素血管紧张素系统通过下调iNOS改善糖尿病大鼠胰岛功能.中华内分泌代谢杂志.2008:24:43-47.
    [19] Kuno A, Yamata T, Masuda K, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 2003; 124:1010-1019.
    [20] Barton M, Carmona R, Ortmann J, et al. Obesity-associated activation of Angiotensin and endothelin in the cardiovascular system. Int J Biochem Cell Bio. 2003; 135:826-837.
    [21] HuAng Z, Jansson L, Sjoholm A. Pancreatic islet blood flow is selectively enhanced by captopril,irbesartan and pravastatin, and suppressed by palmitat. Biochem Biophys Res Commun. 2006; 346:26-32.
    [22] Leung KK, Leung PS. Effects of hyperglycemia on angiotensin Ⅱ receptor type 1 expression and insulin secretion in an INS-1E pancreatic beta-cell line. JOP. 2008; 9: 290-299.
    [23] HuAng Z, Sj(o丨¨)holm A. Ethanol acutely stimulates islet blood flow, amplifies insulin ecretion, and induces hypoglycemia via nitric oxide and vagally mediated mechanisms. Endocrinology. 2008; 149:232-236.
    [24] Johansson M, Mattsson G, Andersson A, et al. Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology. 2006; 147:2315-2324.
    [25] Nikolova G, Jabs N, Konstantinova I, et al. The vascular basement membrane:a niche for insulin gene expression and Beta cell proliferation. Dev Cell. 2006; 10: 397-405.
    [26] Wachlin G, Augstein P, Schr(o丨¨)der D, et al. IL-lbeta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J Autoimmun. 2003; 20:303-312.
    [27] Gunnett CA, Heistad DD, Faraci FM. Gene-targeted mice reveal a critical role for inducible nitric oxide synthase in vascular dysfunction during diabetes. Stroke. 2003; 34: 2970-2974.
    [28] Sigfrid LA, Cunningham JM, Beeharry N, et al. Antioxidant enzyme activity and mRNA expression in the islets of LAngerhans from the BB/S rat model of type 1 diabetes and an insulin-producing cell line. J Mol Med. 2004; 82: 325-335.
    [29] McCabe C, O'Brien T. The rational design of beta cell cytoprotective gene transfer strategies:targeting deleterious iNOS expression. Mol Biotechnol. 2007; 37: 38-47.
    [30] Zanone MM, Favaro E, Ferioli E, et al. Human pancreatic islet endothelial cells express coxsackievirus and adenovirus receptor and are activated by coxsackie B virus infection. FASEB J. 2007:
    ??21:3308-3317.
    【31】 Mizukami H, Wada R, Yonezawa A, et al. Suppression of post-prandial hyperglycaemia by pioglitazone improved islet fibrosis and macrophage migration in the Goto-Kakizaki rat. Diabetes Obes Metab. 2008; 10: 791-794.
    【32】 ZhAng H, Park Y, Wu J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond). 2009;116:219-230.
    【33】 Ide N, Hirase T, Nishimoto-Hazuku A, et al. Angiotensin Ⅱ increases expression of IP-10 and the renin-Angiotensin system in endothelial cells.Hypertens Res. 2008; 31: 1257-1267.
    【34】 Wu-Wong JR. Endothelial dysfunction and chronic kidney disease: treatment options. Curr Opin Investig Drugs. 2008; 9: 970-982.
    【35】 Johansson M, Jansson L, Carlsson PO. Improved vascular engraftment and function of autotransplanted pancreatic islets as a result of partial pancreatectomy in the mouse and rat.Diabetologia. 2007 ; 50: 1257-1266.
    【36】 Johansson M, Carlsson PO, Bodin B, et al. Acute effects of a 50% pancreatectomy on total pancreatic and islet blood flow in rats. Pancreas. 2005 ; 30 : 71-75.
    【37】 Carlsson PO, Olsson R, Kallskog O, et al. Glucose-induced islet blood flow increase in rats:interaction between nervous and metabolic mediators. Am J Physiol Endocrinol Metab. 2002 ; 283:E457-E464.
    【38】 Svensson AM, Ostenson CG, Bodin B, et al. Lack of compensatory increase in islet blood flow and islet mass in GK rats following 60% partial pancreatectomy. J Endocrinol. 2005 ; 184 : 319-327.
    【39】 Li X, ZhAng L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006 ; 55 : 2965-2973.
    【40】 Iwase M, Nakamura U, Uchizono Y, et al. Nateglinide, a non-sulfonylurea rapid insulin secretagogue, increases pancreatic islet blood flow in rats. Eur J Pharmacol. 2005; 518: 243-250.
    【41】 HuAng Z, Jansson L, Sjoholm A. Vasoactive drugs enhance pancreatic islet blood flow,augment insulin secretion and improve glucose tolerance in female rats. Clin Sci (Lond). 2007; 112:69-76.
    【42】 HuAng Z, Jansson L, Sjoholm A. Pancreatic islet blood flow is selectively enhanced by captopril, irbesartan and pravastatin, and suppressed by palmitate. Biochem Biophys Res Commun.2006; 346: 26-32.
    【43】 R Olsson, L Jansson, A Andersson. Local blood regulation in transplanted rat pancreatic islets:influence of adenosine, Angiotensin II and nitric oxide inhibition. Transplantation. 2000; 70: 280-287.
    【44】 Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity. J Clin
    Endocrinol Metab. 2008; 93: S64-S73.
    【45】Gogia A, Agarwal PK. Metabolic syndrome. Indian J Med Sci. 2006; 60: 72-81.
    【46】 Donath MY, Schumann DM, Faulenbach M, et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care, 2008; 31: S161-S164.
    【47】 Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol. 2005; 46: 1978-1985.
    【48】Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J.2004 ; 382:393-409.
    【49】 Chipitsyna G, Gong Q, Gray CF, et al. Induction of monocyte chemoattractant protein-1 expression by Angiotensin Ⅱ in the pancreatic islets and beta-cells. Endocrinology. 2007; 148:2198-2208.
    【50】 Yamaguchi K, Ura N, Murakami H, et al. Olmesartan Ameliorates Insulin Sensitivity by Modulating Tumor Necrosis Factor-a and Cyclic AMP in Skeletal Muscle. Hypertension Res. 2005; 28:773-778.
    【51】 Eldor R, Yeffet A, Baum K, et al. Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A, 2006; 103: 5072-5077.
    【52】 de Vinuesa SG, Goicoechea M, Kanter J, et al. Insulin Resistance, Inflammatory Biomarkers, and Adipokines in Patients with Chronic Kidney Disease: Effects of Angiotensin Ⅱ Blockade. J Am Soc Nephrol. 2006; 17: S206-S212.
    【53】Dandona P, Kumar V, Aljada A, et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: evidence of an antiinflammatory action. J Clin Endocrinol Metab. 2003; 88: 4496-4501.
    【54】 Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008; 295:C849-C868.
    【55】 Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res. 2007; 4: 63-71.
    【63】Xu J, Long YS, Gozal D, et al. beta-cell death and proliferation after intermittent hypoxia: Role of oxidative stress. Free Radic Biol Med. 2009; 46: 783-90.
    【56】TAng C, Han P, Oprescu Al, et al. Evidence for a role of superoxide generation in glucose-induced beta-cell dysfunction in vivo.Diabetes. 2007; 56: 2722-2731.
    【57】 Robertson RP, Harmon JS. Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett. 2007; 581: 3743-3748.
    【58】 PO Carlsson, F Palm, A Andersson, et al. Markedly decreased oxygen tension in transplanted rat
    ??pancreatic islet irrespective of the implantation site. Diabetes. 2001; 50: 489-495.
    【59】SP Ip, YW Chan, CT Che, et al. Effects of chronic hypoxia on glutathione status and membuane integrity in the pancreas. Pancreatology. 2002; 2: 34-39.
    【60】 SP Ip, SW TsAng, TP Wong, et al. Saralasin, a non-specific Angiotensin Ⅱ receptor antagonist,antenuates oxidative stress and tissue injury in lerulein-induced acute panceatiti. Pancreas. 2003; 26:224-229.
    【61】 Zhou YP, Madjidi A, Wilson ME, et al. Matrix metalloproteinases contribute to insulin insufficiency in zuker diabetic fatty rats. Diabetes. 2005; 54: 2612-2619.
    【62】 KO SH, Kwon HS, Kim SR, et al. Ramipril treatment surpresses islets fibrosis in Otsuka Long-Evans Tohushima Fatty rats. Biochem Biophys Res Commun. 2004; 361: 114-122.
    【63】 Yamata T, Kuno A, Masuda K, et al. Candesartan, an Angiotensin Ⅱ receptor antagonist,suppresses pancreatic inflammation and fibrosis in rats. J Pharmacol Exp Ther. 2003; 307: 17-23.
    【64】 Nagashio Y, Asaumi H, Watanabe S, et al. Angiotensin Ⅱ type 1 receptor interaction is an important regulator for the development of pancreatic fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2004; 287: G170-G177.
    【65】 Musi N, Goodyear LJ. Insulin resistance and improvements in signal transduction. Endocrine.2006; 29: 73-80.
    【66】 Yeom SY, Kim GH, Kim CH, et al. Regulation of insulin secretion and beta-cell mass by activating signal cointegrator 2. Mol Cell Biol. 2006; 26: 4553-4563.
    【67】 Navarro-Tableros V, Sanchez-Soto C, Garcia S, et al. Autocrine regulation of single pancreatic β-cell survival. Diabetes. 2004; 53: 2018-2023.
    【68】 Lingohr MK, Dickson LM , Wrede CE, et al. Decreasing IRS-2expression in pancreaticβ-cells(INS-1) promotes apoptosis, which can be compensated for by introduction of IRS-4 expression. Mol Cell Endocrinol. 2003; 209: 17-31.
    【69】elissa K Lingohr, Isabelle Briaud, Lorna M. Specific Regulation of IRS-2 expression by Glucose in Rat Primary Pancreatic Islet Cells. J Biol Chem. 2006; 281: 15884-15892.
    【70】 Kubota N, Terauchi Y, Tobe K, et al. Insulin receptor substrate 2 play a crucical role in β-cell and hypothalamus. J Clin Vest. 2004; 114: 917-927.
    【71】 Villarreal RS, Alvarez SE, Ayub MJ, et al. AngiotensinII modulates tyr-phosphorylation of IRS-4,an insulin receptor substrate, in rat liver membranes. Mol Cell Biochem. 2006; 293: 35-46.
    【72】 Park JL, Loberg RD, Duquaine D, et al. GLUT4 Facilitative Glucose Transporter Specifically and Differentially Contributes to Agonist-Induced Vascular Reactivity in Mouse Aorta. Arterioscler Thromb Vasc Biol. 2005; 25: 1596-1602.
    【73】Wang XP, ZhAng R, Wu K, et al. Angiotensin Ⅱ mediates acinar cell apoptosis during the development of rat pancreatic fibrosis by AT1R. Pancreas. 2004; 29: 264-270.
    【74】 Lau T, Carlsson PO, Leung PS. Evendence for a local Angiotensin and dose-dependent inhibition of glucose-stimulated insulin release by aniotensin II in sisolated pancreatic islets. Diabetologia. 2004;47: 240-248.
    【75】 Lau T. Pancreatic islet rennin-Angiotensin system:its role in insulin secrection and in islet transplantation[thesis]. The Chinese University of Hongkang; 2004.
    【76】 Hamming I, Cooper ME, Haagmans BL, et al. The emerging role of ACE2 in physiology and disease. J Pathol. 2007 ; 212: 1-11.
    【77】 Oudit GY, Crackower MA, Backx PH, et al. The role of ACE2 in cardiovascular physiology.Trends Cardiovasc Med. 2003; 13: 93-101.
    【78】 Santos RAS, Ferreira AJ. Angiotensin-(1-7) and the renin-Angiotensin system. Curr Opin Nephrol Hypertens. 2007; 16: 122-128.
    【79】 Guo YJ, Li WH, Wu R,et al. ACE2 Overexpression Inhibits Angiotensin H-induced Monocyte Chemoattractant Protein-1 Expression in Macrophages. Arch Med Res. 2008; 39: 149-155.
    【80】 Bernstein KE. Physiology: Two ACEs and a heart. Nature. 2002; 417: 799-802.
    【81】 Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: a new paradigm.Trends Endocrinol Metab. 2007; 18: 208 -214.
    【82】 Singh VP, Le B, Bhat VB, et al. High glucose induced regulation of intracellular angiotensin Ⅱ synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007; 293:H939-H948.
    【83】 Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2008; 17: 168 鈥?73.
    【84】 Singh VP, Le B, Khode R, et al. Intracellular angiotensin Ⅱ production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008 ; 57:3297-3306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700