用户名: 密码: 验证码:
α_1抗胰蛋白酶在肺癌发生发展中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是当今世界发病和死亡率最高的恶性肿瘤。在我国城市居民中其死亡率高居癌症死亡的首位。尽管随着基础与临床医学的发展,肺癌的病因、诊断及治疗水平有了很大提高,但对其发生与发展的认识以及治疗的效果远未达到令人满意的程度。
     α_1AT是一种重要的血浆蛋白酶抑制剂。研究发现多种恶性肿瘤细胞可以合成α_1AT,并且组织局部的α_1AT具有明显抑制肿瘤细胞生长、转移和实体瘤血管形成的特点。因此,α_1AT被认为是肿瘤诊断与治疗的潜在靶点。
     研究目的:观察α_1AT在非小细胞肺癌组织中的表达,研究α_1AT对人肺癌细胞株A549生长的影响。
     研究方法:
     1、用免疫组织化学Envision法检测72例非小细胞肺癌组织中α_1AT的表达。
     2、培养人肺癌细胞A549,采用RT-PCR的方法克隆人α_1AT基因编码区cDNA,构建国α_1AT的真核表达载体;转染A549细胞,G418筛选稳
Carcinoma of the lung has been the leading cause of cancer incidence and death up to now. Its mortality has been the top of all malignant tumors in citizen of China. With the development of basic and clinical medicine, great progress has been achieved in the diagnosis and treatment of lung cancer, however it is far from satisfied in understanding the development of lung cancer, neither the outcome of therapy of the disease.α_1 AT, an important serum protease inhibitor, has been found to be synthesized by many malignant carcinoma cells. It is reported that α_1AT locally suppressed tumor cell proliferation, metastasis and angiogenesis in the solid tumors. So it is believed that the α_1AT might play an important role in the diagnosis and treatment of the tumors.Objective: To investigate the expression of α_1AT in non-small cell lung carcinoma (NSCLC) and its effect on cell proliferation in human lung adenocarcinoma cell line A549.Methods:
    1: α_1AT expression was detected using Envision immunohistochemical staining in 72 specimens of the NSCLC prepared with paraffin embedding.2: The human lung cancer cell line A549 was cultured and the coding sequence of α_1 AT cDNA was cloned by RT-PCR to construct α_1AT eukaryotic expression vector. When the vector was constructed and selected by G418, A549 cells were transfected with pcDNA3.1(+)(as control)vector or pcDNA3.1(+)-α_1AT. These cells were cultured on cover slips and observed respectively through HE staining and electron microscopy. All the cells were cultured and counted every other day, thus the growth curve was drawn. α_1AT mRNA and protein levels were measured with RT-PCR, immunofluorescence microscopy and western blotting. Apoptosis was detected by AnnexinV staining and Hoechst staining.3. BALB/c nude mice were injected subcutaneously with A549, A549-pcDNA(3.1+), A549-pcDNA(3.1+)-α_1AT cell suspension respectively to construct nude mouse lung carcinoma animal model. The formation and proliferation of the tumors were observed by measuring the tumor volume and weight.Results:Part I : α_1AT protein expression was observed in 66 of 72 cases of NSCLC. It was highly expressed in lung cancer tissues (91.6%) than in para-carcinoma tissues (41.6%)(P<0.05), which may be due to the synthesis of NSCLC cells themselves. aiAT level was much more higher in stage I—II cases than in stage III-IV cases, which might imply that α_1AT was related with lung cancer clinical staging. Positive correlation was found between the expression and the cell differentiation. The lower was the tumor cell grade, the less was α_1AT expression; There was no significant difference between
    moderate- and high-differentiated NSCLC samples in the expression, but it was found that staining was more intensive in later group. Negative correlation was found between the expression and the tumor size. The bigger was the tumor the less was the expression. There were no correlation between α_1AT expression and sex, age and NSCLC histologic types.Part II: cDNA coding otiAT about 1200bp was generated by reverse transcription-PCR. The purified PCR product was inserted into the BamH I and EcoR V sites of pcDNA3.1(+). Sequence analysis showed that it was the same as the α_1AT sequence reported. Then α_1AT PCR product was cloned reversal into pcDNA3.1(+) vector. The A549 stable transfectants with either control vector pcDNA3.1(+), or pcDNA3.1(+)-α_1AT were established. Morphology of A549/ pcDNA3.1(+)-ctiAT under electron microscopy displayed signs of apoptosis, such as plasma membrane blebbing and multiplied nuclei. Cell growth curve showed A549/pcDNA3.1(+)-α_1AT proliferated slowly than other kinds of cells.0.5 × 10~5 different kinds of cells were cultured in 6-well plates respectively. In day 7, the number of A549/ pcDNA3.1(+)-α_1AT was just 3.12 × 105 but all other cells was 6.83 × 105. A549/pcDNA3.1(+)-aiAT had significantly decreased in cell number compared with the other two groups.Strong and diffuse green staining of α_1AT emerged in pcDNA3.1 (+)-α_1AT transfected cells by indirect immunofluorescence staining, but in negative control and the native A549 the staining was very weak or absent.The mRNA of α_1AT in A549 and A549/ pcDNA3.1(+) cells were nearly undetectable by RT-PCR. In contrast, the mRNA level of α_1AT was detected obviously in A549/pcDNA3.1(+)-α_1AT cells. At the same time , β -actin mRNA had not been changed in all kinds of cells. The similar change was
    found in the level of α_1AT protein through western blotting.The pcDNA3.1(+)-α_1AT transfected cells showed more typical apoptotic characters, such as shrinkage nuclei, chromatin condensation, plasma membrane blebbing and chromatin breakage fragments by Hoechst staining under fluorescence microscope than the negative control and the native A549 cells. The same scene was found under transmission electron microscope. The apoptosis rate in the pcDNA3.1(+)-α_1AT cells was significantly higher than that of the negative control and the native A549 cells. A549 cell's apoptosis was increased significantly after transfected with α_1AT.Partlll: When tumor cells were seeded in nude mice, the tumorigenesis was found in day 16 in those injected with A549/ pcDNA3.1(+)-α_1AT cell suspension transfected by α_1AT gene , as the other two groups was in day 7. The incubation period of tumors was lengthened in the experimental group than in the control and the tumor volume was significant decreased either. The tumor-inhibiting rate was 55.5%. It indicated that α_1AT could inhibit thesubcutaneous tumorigenic of A549 in nude mice. Conclusion1.Our study showed that the expression of α_1AT in NSCLC tissues were significant higher than in para-carcinoma tissues, and the expression of α_1AT was not correlated with the age, gender and histological types. Its expression level was negatively correlated with NSCLC clinical TNM staging but positively with cell differentiation. The lower was the tumor cell differentiation and the clinical TNM staging, the less was α_1AT expression. On the other hand, the smaller was the tumor size, the higher was the expression, which could also be found in clinical staging. So α_1AT might be an index for estimating the degree of malignant and progression of the
引文
1. Patterson M.The trouble with smoking. Nat Rev Genet, 2000,1 (3):168.
    2. Hinds MW, Kolonel LN, Hankin JH, Lee J. Dietary vitamin A, carotene, vitamin C and risk of lung cancer in Hawaii. Am J Epidemiol, 1984,119(2):227-37.
    3. Byers TE, Graham S, Haughey BP, Marshall JR, Swanson MK. Diet and lung cancer risk: findings from the Westem New York Diet Study. Am J Epidemiol., 1987, 125(3): 351-63.
    4. van Halteren HK, Taal BG, van Tinteren H, van Leeuwen FE. Risk factors for the development of oesophageal cancer as a second primary tumour. Eur J Cancer. , 1995, 31A(11): 1836-9.
    5. Mabry M. The Biology of Lung Cancer: An Overview. Cancer Control. , 1994, 1(5): 528-536.
    6. Thomas A, Dacid C. Neoplasm of the lung. See: David C, Frank C.Sabiston.Surgery of the chest.the sixth deition,Harcourt Publisherd Limited, 1999, 634-655.
    7. Yammela T, Enholm B, Alitalo K, Paavonen K.The biology of vascular endothelial growth factors. Cardiovasc Res, 2005, 65(3): 550-563.
    8. Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS, 2005, (94): 209-31.
    9. Volm M, Mattem J, Koomagi R. Inverse correlation between apoptotic (Fas ligand, caspase-3) and angiogenic factors (VEGF, microvessel density) in squamous cell lung carcinomas. Anticancer Res, 1999, 19(3A): 1669-71.
    10. Loureiro RM, D'Amore PA.Transcriptional regulation of vascular endothelial growth factor in cancer. Cytokine Growth Factor Rev, 2005, 16(l):77-89.
    11. Higa GM.Signaling multiplex of the epidermal growth factor receptor. Expert Rev Anticancer Ther, 2004,4(6): 1145-56.
    12. Kratzke RA, Greatens TM, Rubins JB, Maddaus MA, Niewoehner DE, Niehans GA, Geradts J.Rb and pl6INK4a expression in resected non-small cell lung tumors. Cancer Res,1996,56(15):3415-20.
    13. Hamacher S, Matern S, Roeb E.Extracellular matrix— from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases. Dtsch Med Wochenschr, 2004, 129(38):1976-80.
    14. Janoff A, Scherer J. Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med, 1968, 128(5):1137-55.
    15. Sinha, S., Watorek, W., Karr, S. Primary structure of human neutrophil elastase. Proc Natl Acad Sci USA, 1987, 84(8):2228-32.
    16. Gabazza E., Taguchi O., Yamakami T., Machishi M. Correlation between increased granulocyte elastase release and activation of blood coagulation in patients with lung cancer. Cancer (Phila.), 1993, 72: 2134-2140.
    17. Chughtai B, O'Riordan TGPotential role of inhibitors of neutrophil elastase in treating diseases of the airway.J Aerosol Med, 2004,17(4):289-98.
    18. Jenne D. E. Structure of the azurocidin, proteinase 3, and neutrophil elastase genes. Implications for inflammation and vasculitis. Am. J. Resp. Crit. Care Med., 1994, 150: S147-S154.
    19. Palmgren MS, deShazo RD, Carter RM, Zimny ML, Shah SV.Mechanisms of neutrophil damage to human alveolar extracellular matrix: the role of serine and metalloproteases. J Allergy Clin Immunol, 1992, 89(4):905-15.
    20. Yamashita JI, Ogawa M, Ikei S, Omachi H, Yamashita SI, Saishoji T, Nomura K, Sato H. Production of immunoreactive polymorphonuclear leucocyte elastase in human breast cancer cells: possible role of polymorphonuclear leucocyte elastase in the progression of human breast cancer. Br J Cancer, 1994, 69:72—76.
    21. Yamashita J, Tashiro K, Yoneda S, Kawahara K, Shirakusa T. Local increase in polymorphonuclear leukocyte elastase is associated with tumor invasiveness in non-small cell lung cancer. Chest, 1996, 109:1328-1334.
    22. Yamashita J, Ogawa M, Abe M, Hayashi N, Kurusu Y, Kawahara K, Shirakusa T. Tumor neutrophil elastase is closely associated with the direct extension of non-small cell lung cancer into the aorta. Chest, 1997,111:885-890.
    23. Tanaka E, Yamashita J, Hayashi N, Kato S, Kondo K, Ogawa M.A pulmonary metastatic model of human non-small cell lung carcinoma cells that produce a neutrophil elastase-like molecule in severe combined immunodeficiency mice. Chest, 2003, 123(4):1248-53.
    24. Sun Z, Yang P. Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol, 2004, 5(3): 182-90.
    25. Eriksson S. Pulmonary emphysema and alpha 1-antitrypsin deficiency. Acta Med Scand, 1964, 175:197-205
    26. Gadek JE, Klein HG, Holland PV, Crystal RGReplacement therapy of alpha 1-antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. J Clin Invest, 1981,68(5):1158-65.
    27. Djie MZ, Stone SR, le Bonniec BF. Intrinsic specificity of the reactive site loop of alphal-antitrypsin, alphal-antichymotrypsin, antithrombin, and protease nexin I. J Biol Chem, 1997, 272(26): 16268-16273.
    28. Elliott PR, Abrahams JP, Lomas DA. Wild-type alphal-antitrypsin is in the canonical inhibitory conformation. J Mol Biol, 1998, 275(3) I 419-421.
    29. Chaillan-Huntington CE, Gettins PG, Huntington JA, Patston PA. The P6-P2 region of serpinsis critical for proteinase inhibition and complexstability. Biochemistry, 1997,36(31) : 9562-9564.
    30. Carrell, R, Lomas D, Stein P, and Whisstock J. Dysfunctional variants and the structural biology of the serpins. Adv Exp Med Biol, 1997, 425: 207-222.
    31. Huber, R, and Carrell RW. Implications of the three-dimensional structure of (?) -antitrypsin for structure and function of serpins. Biochemistry, 1990,117: 48-53.
    32. Perlmutter, DH, Cole FS, Kilbridge P, Rossing TH, and Colten HR. Expression of theχ_1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci USA, 1985,82: 795-799.
    33. Molmenti, E, Perlmutter DH, and Rubin D. Cell-specific expressionof χ_1 -antitrypsin in intestinal epithelial cells. J Clin Invest, 1993, 92: 2022-2034.
    34. Venembre, P, Boutten A, Seta N, Dehoux MS, Crestani B, Aubier M, and Durand G Secretion of χ_1-antitrypsin by alveolar epithelial cells. FEBS Lett, 1994, 346: 171-174.
    35. Rollini P, Fournier RE. A 370-kb cosmidcontig of the serpin gene cluster on human chromosome 14q32.1: molecular linkage of the genes encoding alpha 1-antichymotrypsin, protein C inhibitor, kallistatin, alpha 1-antitrypsin, and corticosteroid-binding globulin. Genomics, 1997,46(3) : 409-415.
    36. Lomas DA. New insights into the structural basis of alpha 1-antitrypsin deficiency. QJM, 1996,89(11) : 807-812.
    37. Curiel DT, Chytil A, Courtney M, Crystal RG.Serum alpha 1- antitrypsin deficiency associated with the common S-type (Glu264-Val) mutation results from intracellular degradation of alpha 1-antitrypsin prior to secretion. J Biol Chem, 1989, 25; 264(18):10477-86.
    38. Kotova TS, Basis VIu, Atovmian OI, Andreeva NE, Chernokhvostova EV. Alpha 1-protease inhibitor: characteristics of its biochemical and biological properties and its level in various diseases (review of the literature and personal observations) Ter Arkh, 1986, 58(4):77-80.
    39. Guillin MC, Bezeaud A.General mechanisms of coagulation and their physiological inhibition. II. The regulation of coagulation by physiological inhibitors] Pathol Biol (Paris), 1985, 33(9):917-32.
    40. Lee JH, Brantly M.Molecular mechanisms of alpha1-antitrypsin null alleles. Respir Med, 2000, 94 Suppl C:S7-11.
    41. Maruyama T.Genetic analyses of alpha l-antitrypsin deficiency. Nippon Pdnsho, 1993, 51 (2): 507-13.
    42. Jezierski G, Pasenkiewicz-Gierula M. The effect of the Glu342Lys mutation in alphal-antitrypsin on its structure, studied by molecular modelling methods. Acta Biochim Pol, 2001, 48(1): 65-75.
    43. Piitulainen E, Eriksson S. Decline in FEV1 related to smoking status in individuals with severe alphal-antitrypsin deficiency (PiZZ). Eur Respir J, 1999, 13(2):247-51.
    44. Williams TJ, Jose PJ. Neutrophils in chronic obstructive pulmonary disease. Novartis Found Symp, 2001, 234: 136-41;
    45. Knight, KR, Burdon JG, Cook L, Brenton S, Ayad M, and Janus ED. The proteinase-antiproteinase theory of emphysema: a speculative analysis of recent advances into the pathogenesis of emphysema. Respirology, 1997, 2: 91-95.
    46. Bohadana A, Teculescu D, Martinet Y. Mechanisms of chronic airway obstruction in smokers. Respir Med, 2004, 98(2): 139-51.
    47. Coakley RJ, Taggart C, O'Neill S, McElvaney NG. Alphal-antitrypsin deficiency: biological answers to clinical questions. Am J Med Sci, 2001, 321(1): 33-41.
    48. Gadek JE, Fells GA, Zimmerman RL, Rennard SI, Crystal RG. Antielastases of the human alveolar structures. Implications for the protease-antiprotease theory of emphysema. J Clin Invest, 1981, 68(4) : 889-898.
    49.黎东明、郭兰萍、岑慧.肺气肿患者血清^1-AT水平的检测及其临床意义.广东医学院学报,2000,118(2):153-155.
    50.李玉秀,左竹林,张聪敏,等.慢性阻塞性肺气肿血清α 1-抗胰蛋白酶 测定结果分析.临床荟萃,1991,6(10):473~474.
    51.揭志军、杨文兰、蔡映云、金美玲、朱威祝、慈芳.al抗胰蛋白酶对内毒素致兔急性肺损伤的防护作用.Chin J Tuber Rcspir Dis,2000,123(4):250-251.
    52. Alvarez-Granda L, Cabero-Perez MJ, Bustamante-Ruiz A, Gonzalez-Lamuno D, Delgado-Rodriguez M, Garcia-Fuentes M. PI SZ phenotype in chronic obstructive pulmonary disease. Thorax, 1997, 52(7): 659-61.
    53. Seersholm N.Pi MZ and COPD: will we ever know? Thorax, 2004, 59(10):823-5.
    54. Seersholm N, Wilcke JT, Kok-Jensen A, Dirksen A.Risk of hospital admission for obstructive pulmonary disease in alpha(1)-antitrypsin heterozygotes of phenotype PiMZ.Am J Respir Crit Care Med, 2000, 161(1): 81-4.
    55. Bencze K. PiM subtypes in healthy subjects and COPD patients and Hardy-Weinberg equilibrium. Chest, 1983, 84(6): 785-6.
    56. Matsuse T, Fukuchi Y, Matsui H, Sudo E, Nagase T, Orimo H. Effect of cigarette smoking on pulmonary function in each phenotype M of alpha-1-protease inhibitor. Chest, 1995, 107(2): 395-400.
    57. Larsson C. Natural history and life expectancy in severe alphal-antitrypsin deficiency, Pi Z. Acta Med Scand, 1978, 204(5): 345-51.
    58. Eriksson S, Hagerstrand I. Cirrhosis and malignant hepatoma in alpha l-antitrypsin deficiency. Acta Med Scand, 1974, 195(6): 451-8.
    59. Marwick TH, Cooney PT, Kerlin P. Cirrhosis and hepatocellular carcinoma in a patient with heterozygous (MZ) alpha-l-antitrypsin deficiency. Pathology, 1985,17(4):649-52.
    60. Takeuchi Y, Sugimoto M.Hepatocellular carcinoma in patients with metabolic liver disease] Nippon Rinsho, 2001,59 Suppl 6:469-73.
    61. Zhou H, Fischer HP. Liver carcinoma in PiZ alpha-1-antitrypsin deficiency. Am J Surg Pathol, 1998,22(6):742-8
    62. Doustjalali SR, Yusof R, Yip CH, Looi LM, Pillay B, Hashim OH.Aberrant expression of acute-phase reactant proteins in sera and breast lesions of patients with malignant and benign breast tumors. Electrophoresis, 2004,25(14):2392-401.
    63. Benkmann HG, Hanssen HP, Ovenbeck R, Goedde HW. Distribution of alpha-1-antitrypsin and haptoglobin phenotypes in bladder cancer patients. Hum Hered, 1987, 37(5):290-3.
    64. Yavelow J, Tuccillo A, Kadner SS, Katz J, Finlay TH, Yavelow J, Tuccillo A, Kadner SS, Katz J, Finlay TH: Alpha 1-antitrypsin blocks the release of transforming growth factor-alpha from MCF-7 human breast cancer cells. J Clin Endocrinol Metab, 1997, 82:745-752.
    65. Zelvyte I, Lindgren S, Janciauskiene S.Multiple effects of alpha 1-antitrypsin on breast carcinoma MDA-MB 468 cell growth and invasiveness. Eur J Cancer Prev, 2003,12(2): 117-24.
    66. Guner G, Kirkali G, Baskin Y, Karlikaya C, Akkoclu A: Elastase levels in small and non-small cell lung carcinoma. Biochem Soc Trans, 1993, Suppl 21:305.
    67. Yang P, Cunningham JM, Hailing KC, Lesnick TG, Burgart LJ, Wiegert EM, Christensen ER, Lindor NM, Katzmann JA, Thibodeau SN.Higher risk of mismatch repair-deficient colorectal cancer in alpha(l)-antitrypsin deficiency carriers and cigarette smokers. Mol Genet Metab, 2000, 71(4):639-45.
    68. Nejjari M, Berthet V, Rigot V, Laforest S, Jacquier MF, Seidah NG, Remy L, Bruyneel E, Scoazec JY, Marvaldi J, Luis J.Inhibition of proprotein convertases enhances cell migration and metastases development of human colon carcinoma cells in a rat model. Am J Pathol, 2004,164(6): 1925-33.
    69. Lee K, Kye M, Jang JS, Lee OJ, Kim T, Lim D.Proteomic analysis revealed a strong association of a high level of alpha 1-antitrypsin in gastric juice with gastric cancer. Proteomics, 2004,4(11):3343-52.
    70. Schwartz AG, Rothrock M, Yang P, Swanson GM.Increased cancer risk among relatives of nonsmoking lung cancer cases. Genet Epidemiol. 1999; 17(1): 1-15. Schwartz AGGenetic predisposition to lung cancer. Chest, 2004, 125(5 Suppl):86S-9S.
    71. Yang P, Wentzlaff KA, Katzmann JA, Marks RS, Allen MS, Lesnick TG, Lindor NM, Myers JL, Wiegert E, Midthun DE, Thibodeau SN, Krowka MJ. Alpha 1-antitrypsin deficiency allele carriers among lung cancer patients. Cancer Epidemiol Biomarkers Prev, 1999,8(5):461-5.
    72. Skillrud DM, Offord KP, Miller RD.Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med, 1986, 105(4):503-7.
    73. Tockman MS, Anthonisen NR, Wright EC, Donithan MG.Airways obstruction and the risk for lung cancer. Ann Intern Med, 1987, 106(4):512-8.
    74. Mimoun Nejjari, Virginie Berthet, Veronique Rigot, Sullivan Laforest, Marie-France Jacquier, Nabil G. Seidah, Lionel Remy, Erik Bruyneel, Jean-Yves Scoazec, Jacques Marvaldi and Jose Luis.Inhibition of Proprotein Convertases Enhances Cell Migration and Metastases Development of Human Colon Carcinoma Cells in a Rat Model. American Journal of Pathology, 2004,164:1925-1933.
    75. Pei D, Majmudar G, Weiss SJ: Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem, 1994,269:25849-25855.
    76. Huang H, Campbell SC, Nelius T, Bedford DF, Veliceasa D, Bouck NP, Volpert OV. Alpha 1-antitrypsin inhibits angiogenesis and tumor growth.Int J Cancer,2004, 112(6): 1042-8.
    77. Geiger B, Bershadsky A, Pankov R, Yamada KM: Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol, 2001,2:793-805
    78. D'Agostino P, Camemi AR, Caruso R, Arcoleo F, Cascio A, Dolce A, Sacco E, Cangemi G, di Rosa T, Moceo P, Cillari E.Matrix metalloproteinases production in malignant pleural effusions after talc pleurodesis.Clin Exp Immunol,2003, 134(l):138-42.
    79. Stoller JK, Aboussouan LS.alpha 1-Antitrypsin deficiency. 5: intravenous augmentation therapy: current understanding. Thorax, 2004,59(8):708-12.
    80. Seersholm N, Wencker M, Banik N, Viskum K, Dirksen A, Kok-Jensen A, Konietzko N.Does alpha 1-antitrypsin augmentation therapy slow the annual decline in FEV1 in patients with severe hereditary alpha 1-antitrypsin deficiency? Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen (WATL) alphal-AT study group. Eur Respir J, 1997,10(10):2260-3.
    81. Crystal RG. Gene therapy strategies for pulmonary disease. AmJ Med, 1992,92(suppl 6a):44s.
    82. Rettinger SD , Kennedy SC , WuX , et al. Liver directed gene therapy: quantitative evaluation of prom oter elements by using in vivo retroviral transduction. Proc N atl Acad Sci USA, 1994,91:1460.
    83. Saylors RL I , W an DA. Expression of human alpha 1-antitrypsin in m urine hem atopoietic cells in vivo after retrovirus m ediates gene transfer. M ol Genet Metab, 1998, 63(3): 198.
    84. Eckert H. Immunohistochemical findings in intrathoracic tumors. II. Demonstration of alpha 1-antitrypsin in tumor tissueZ Erkr Atmungsorgane, 1983, 161(3):319-24.
    85. Daddi G, Mancini PA, Parola D, Matzeu M.Behaviour of alphal-antitrypsin in lung cancer. Scand J Respir Dis Suppl, 1977,102:205-6.
    86. de la Fuente Perucho A, Gallego Hernandez A, Millan Nunez-Cortes J, Cuesta Caselles G, de la Fuente Chaos A. Elevation in alpha-1- antitrypsin in hepatoma. Clinical observationRev Clin Esp, 1977, 146(6):391-4.
    87. Ryu JW, Kim HJ, Lee YS, Myong NH, Hwang CH, Lee GS, Yom HC.The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci,2003,18(4):505-9.
    88. Twining SS, Brecher AS. Isolation and identification of alphal- antitrypsin as a component of normal and malignant human breast and other tissues.Proc Soc Exp Biol Med, 1975, 150(l):98-103.
    89. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Letourneau EG, Lynch CF, Lyon JI, Sandier DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinberg C, Wilcox HB. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology, 2005, 16(2): 137-45.
    90. Primhak RA, Tanner MS. Alpha-1 antitrypsin deficiency. Arch Dis Child, 2001, 85(l):2-5.
    91. Coakley RJ, Taggart C, O'Neill S, McElvaney NG. Alpha 1-antitrypsin deficiency: biological answers to clinical questions. Am J Med Sci, 2001,321(l):33-41.
    92. Giancotti FG, Ruoslahti E: Integrin signaling. Science, 1999, 285:1028-1032.
    93. Gkretsi V, Zhang Y, Tu Y, Chen K, Stolz DB, Yang Y, Watkins SC, Wu C. Physical and functional association of migfilin with cell-cell adhesions. J Cell Sci, 2005,118:697-710.
    94. Parise LV, Lee J, Juliano RL: New aspects of integrin signaling in cancer. Semin Cancer Biol., 2000, 10:407-414.
    95. Clezardin P: Recent insights into the role of integrins in cancer metastasis. Cell Mol Life Sci, 1998, 54:541-548.
    96. Hynes RO.Cell adhesion: old and new questions. Trends Cell Biol, 1999, 9:33-37.
    97. Hlers MRW, Riordan JF. Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry, 1991, 30:10065-10074.
    98. Rice WG, Weiss SJ. Regulation of proteolysis at the neutophil-substrate interface by secretory leukoprotease inhibitor. Science, 1990,249:178-181.
    99. Rosado A, O'Shea KS, Tsuji A, Arai T, Chou S-H, Kurachi K. Hepsin, a putative cell-surface serine protease is required for mammalian cell growth. ProcNatl Acad Sci USA, 1993, 90:7181-7185.
    100.Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function and regulation. J biol. Chem, 1994, 269(159):57-60.
    10l.Wa'el KAFIENAH, David J. BUTTLE, David BURNETT, et al. Cleavage of native type I collagen by human neutrophil elastase. J Biochem, 1998,330.
    102.Conroy DM, Francischi JN, Sirois P. Effect of tumor necrosis factor receptor binding protein on cell infiltration induced by lipopolysaccharide and sephadex beads in guinea pig lung. Inflammation, 1995,19:233.
    103.Chughtai B, O'Riordan TCPotential role of inhibitors of neutrophil elastase in treating diseases of the airway. J Aerosol Med,2004,17(4):289-98.
    104.Starcher B, O'Neal P, Granstein RD, Beissert S. Inhibition of neutrophil elastase suppresses the development of skin tumors in hairless mice.J Invest Dermatol, 1996,107(2): 159-63.
    105.Daddi G, Mancini PA, Parola D, Contini A. Alfa-antitrypsin increase in lung cancer. Boll 1st Sieroter Milan, 1976, 55(6):510-2.
    106.Popper H, Wirnsberger G, Hoefler H, Denk H.Immunohistochemical and histochemical markers of primary lung cancer, lung metastases, and pleural mesotheliomas. Cancer Detect Prev, 1987, 10(3): 167-74.
    107.Troll W,Meyn MS,Rossman TGMechanisms of protease action in carcinogenesis. Carcinogenesis, 1997, 75:397-415.
    108.Sardari PN, Van Marck E, Van Schil P.The prospect of biologic staging of non-small-cell lung cancer.Clin Lung Cancer, 2005, 6(4):217-24.
    109.Hippo Y, Yashiro M, Ishii M, Taniguchi H, Tsutsumi S, Hirakawa K, Kodama T, Aburatani H. Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res, 2001, 61(3):889-95.
    110.Mercapide J, Lopez De Cicco R, Bassi DE, Castresana JS, Thomas G, Klein-Szanto AJ.Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin Cancer Res, 2002,8(6): 1740-6.
    111.Yavelow J, Tuccillo A, Kadner SS, Katz J, Finlay TH. Alpha 1-antitrypsin blocks the release of transforming growth factor-alpha from MCF-7 human breast cancer cells. J Clin Endocrinol Metab, 1997, 82(3):745-52.
    112.Canonico AE, Brigham KL, Carmichael LC, Plitman JD, King GA, Blackwell TR, Christman JW.Plasmid-liposome transfer of the alpha 1 antitrypsin gene to cystic fibrosis bronchial epithelial cells prevents elastase-induced cell detachment and cytokine release. Am J Respir Cell Mol Biol 1996,14(4):348-55.
    113.Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, Ramadori G Expression of matrix metalloproteinase and their inhibitors during hepatic tissue repair in the rat. Histochem Cell Bio, 2000,113:443-453.
    114.Theret N, Musso O . Activation of matrix metalloproteinase-2 from hepatic stellate cells requires . interaction with hepatocytes. Am J Pathol,1997,150:551.
    115.Murphy G,Stanton H,Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J. Mechanisms for pro matrix, metalloproteinase activation. APMIS, 1999,107:38-44.
    116.Arthur MJ, Fibrosis Ⅱ. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver. Physiol, 2000, 279: G245-249.
    117.Fillmore HL, VanMeter TE, Broaddus WC. Membrane-type matrix metalloproteinase(MT-MMPs): expression and function .during glioma invasion. J Neurooncol, 2001, 53:187-202.
    118.Theret N, Musso O,Campion JP, Clement B. Differential expression and malignancies and targets alphal-antitrypsin serpin. Cancer Res. 2004 D origin of membrane-type 1 and 2 matrix metallo-proteinase(MT-MMPs) in association MMP2 activation in injured human liver.Am J Pathol, 1998,153: 945.
    119.Reeves HL, Burt AD,Wood S.Hepatic stellate cell activation occurs in the absence of hepatitis in alcoholic liver disease and correlate with the severity of steatosis. J Hepatol, 1996, 25: 677-683.
    120.Arthur MJ. Fibrosis and altered matrix degradation. Digestion, 1998,12:66.
    121.Ylisirnio S, Hoyhtya M, Turpeenniemi-Hujanen T. Serum matrix metalloproteinase -2, -9 and tissue inhibitors of metalloproteinases-1, -2 in lung cancer-TIMP-1 as a prognostic marker. Anticancer Res,2000,20:1311-1316.
    122.Li W, Savinov AY, Rozanov DV, Golubkov VS, Hedayat H, Postnova TI, Golubkova NV, Linli Y, Krajewski S, Strongin AY.Matrix metalloproteinase-26 is associated with estrogen-dependent Cancer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700