用户名: 密码: 验证码:
苯酚废水对垂柳叶片光合生理参数的影响
详细信息    查看官网全文
摘要
为探索苯酚胁迫对垂柳光合作用生理过程的影响,采用水培模拟胁迫试验方法,在5种苯酚溶液浓度(50mg/L、100 mg/L、200 mg/L、400 mg/L和800 mg/L)下,测定垂柳(Salix babylonica L.)插枝生根植株叶片光合气体交换及叶绿素荧光参数,探讨苯酚胁迫对光合作用的影响程度与限制机理。结果表明:苯酚对垂柳光合作用具有显著抑制作用,表现为叶片净光合速率(P_n)、最大光合速率(P_(nmax))、光合量子效率(Φ)、PSII最大和实际光化学效率(F_V/F_m和Φ_(PSII))等都明显下降。苯酚胁迫浓度越高,对垂柳光合作用的抑制程度越大;苯酚胁迫限制光合作用的原因,主要是由非气孔因素造成的。将垂柳用于苯酚污染水体环境修复时,苯酚浓度应在200 mg/L以下,否则垂柳的光合作用效能会明显降低。垂柳光合作用生理活性耐受苯酚胁迫的极限浓度还需要进一步的试验研究。
Phenolic compounds represent a major class of water environmental pollutants in China.Willow trees and other plants bearing an abundant root system have been shown to phytoremediate phenol.Although the bioremediation of phenol is well studied,information concerning the impact of the contaminants on the plant photosynthetic physiology is scarce.Effects of phenol wastewater on photosynthesis and chlorophyll fluorescence parameters of cutting seedlings of Salix babylonica L.were determined in controlled hydroponics with CIRAS-2 portable photosynthesis system(PP Systems) and pulse-modulated fluorescence monitoring system(FMS 2,Hansatech Instruments) to explore possibility using Salix babylonica L.to phytoremediate phenol wastewater.The results were as follows;1) Under photosynthetic active radiation(PAR) of 1200 μmol/(m~2 · s),with increasing concentration of phenol in the wastewater from 50 mg · L~(-1) to 400 mg · L~(-1),net photosynthesis rate(P__n),transpiration rate(T_r) and stomatal conductance(G,) of seedlings decreased significantly,while the intercellular CO_2 concentration(C_i) increased and was significantly different compared with the control(P<0.05).The data indicated that non-stomatal limitation was responsible for reduction in net photosynthesis rate(P_n).More precisely,Phenol contents with 200 mg/L in the solution reduced the net photosynthesis rate(P_n)and transpiration rate(T_r) of Salix babylonica L,49.77% and 49.51% respectively,as comparing with the control.When the solution of phenol was 800 mg/l,all kinds of photosynthetic response parameters of willows were zero.2) In different treatments,with the increasing photosynthetic active radiation(PAR),net photosynthesis rate(P_n) showed the same trend with the control group.The curve of net photosynthesis rate(P_n)response to P_(ar) was approximate linear increase in the beginning of photosynthetic active radiation(PAR),then becoming moderate increase,finally beginning to decrease.But with the increasing concentration of phenol,the net photosynthesis rate(P_n decreased under the same photosynthetic active radiation(PAR).Under Phenol concentrations at 50mg/L,100mg/L,200mg/L,400mg/L in the solution,the net photosynthesis rate(P_n)of Salix babylonica L.seedlings decreased 27%,40%,50%,61% respectively as comparing with the control under photosynthetic active radiation(PAR) of 600 μmol/(m~2 · s).When photosynthetic active radiation(PAR) was higher than 1400μmol/(m~2 · s),the control had significantly photoinhibition,meanwhile,each experimental group did not have this obvious phenomenon.The higher the concentration of phenol,the greater of photosynthetic light compensation point(Lcp) and the smaller of light saturation point(LSP) of willow.3)With increasing concentration of phenol,maximal photochemical efficiency(F_v/F_m) of PSII,photochemical quenching(qP),actual photochemical efficiency(ΦPSII),conversion efficiency of the antenna(Fv'/ Fm')significantly decreased,while non-photochemical quenching(NPQ) increased at lower phenol concentration and then decreased.When the solution of phenol was 100 mg/1,actual photochemical efficiency(ΦPSII)decreased 52.00% and non-photochemical quenching(NPQ) increased 40.22% compared with the control,which were more than 50.00% of the normal.It was inferred that phenolic wastewater affected non photochemical quenching and electron transfer of PSII,caused the inhibition of photosynthetic electron transport and damage of PSII,and reduced its capturing rate about excitation energy.
引文
[1]Oliver S,Scragg A H,Morrison J.The effect of chlorophenols on the growth of Chlorella VT-1.Enzyme Microb Technol,2003,32:837-842.
    [2]刘琼玉,李太友.含酚废水的无害化处理技术进展.环境污染治理技术与设备,2002,3(20):62-64.
    [3]Ucisik A S,Trapp S.Uptake,removal,accumulation,and phytotoxicity of phenol in willow trees(Salix viminalis).Environmental Toxicology and Chemistry,2006,25:2455-2460..
    [4]Scragg AH,Spiller L,Morrison J.The effect of 2,4-dichlorophenol on the microalga Chlorella VT-1.Enzyme Microb Technol,2003,32:616-622.
    [5]Mirck J,Isebrands JG,Verwijst T,et al.Development of short-rotation willow coppice system for environmental purposes in Sweden.Biomass and Bioenergy,2005,28:219-228.
    [6]Yulla,A K,Martin F.Willows beyond wetland;use of Salix L.species for environmental projects.Water,air,and soil pollution,2005,162:183-204.
    [7]Yu X Z,Trapp S,Zhou P H.Phytotoxicity of Cyanide to Weeping Willow Trees.Environmental Science and Pollution Research,2005,12:109-113.
    [8]钱永强,周晓星,韩蕾,等.Cd~(2+)胁迫对银芽柳PSⅡ叶绿素荧光光响应曲线的影响.生态学报,2011,31(20):6134-6142.
    [9]杨卫东,陈益.垂柳对镉吸收、积累与耐性的特点分析.南京林业大学学报(自然科学版),2009,33(5):17-20.
    [10]陈彩虹,刘治昆,陈光才,等.苏柳172和垂柳对Cu2+的吸收特性及有机酸影响.生态学报,2011,31(18):5255-5263.
    [11]Nijs I,Ferris R,Blum H,et al.Stomatal regulation in a changing climate:A field study using free air temperature increase(FATI)and free air CO_2 enrichment(FACE),Plant Cell Environment,1997,20(8):1041-1050.
    [12]Berry J A,Downton W J S.Environmental regulation of photosynthesis.In Govindjeed.Photosynthesis,Vol.II.New York;Academic Press,1982.
    [13]许大全.光合作用效率.上海:上海科技技术出版社,2002.
    [14]叶子飘,于强.一个光合作用光响应新模型与传统模型的比较.沈阳农业大学学报,2007,38(6):771-775.
    [15]Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis.Ann Rev Plant Physiol,1982,33;317-345.
    [16]Pinol R,Simon E.Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic C02 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn.Journal of Plant Growth Regulation,2009,28(2):97-105.
    [17]Richard B M.Phytoremediation of toxic elemental and organic pollutants,Plant biotechnology,2001,13:153-162.
    [18]Mary L G,David E-S.Fortified foods and phytoremediation.Two sides of the same coin Plant Physiology,2001,164-167.
    [19]Punshon T,Dickinson N.Heavy metal resistance and accumulation characteristics in willows.International Journal of Phytoremediation,1999,1(4):361-385.
    [20]梁芳,郑成淑,孙宪芝,等.低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响.应用生态学报,2010,21(1):29-35.
    [21]El-Hassani F Z,Amraoui M B,Zinedine H.et al.Changes in leaf phenols and other physiological parameters of peppermint in response to olive mill wastewater application.Int.J.Agric Biol,2009,11:413-418.
    [22]陈华新,陈玮,姜闯道,等.光温交叉处理对小麦紫黄质脱环氧化酶活性及其热耗散能力的影响.植物生态学报,2008,32(5):1015-1022.
    [23]韩刚,赵忠.不同土壤水分下4种沙生灌木的光合光响应特性.生态学报,2010,30(15):4019-4026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700