用户名: 密码: 验证码:
京杭运河常州段泥水界面无机氮交换过程模拟研究
详细信息    查看官网全文
摘要
分别在枯水期、平水期、丰水期利用原柱样静态释放实验对京杭运河常州段4个点位的无机氮界面交换过程进行模拟,并借助模拟结果对运河不同形态氮的界面循环过程进行了初步探讨。结果表明,全年NH4+-N界面交换特征均表现为底泥向上覆水体释放,平均交换速率比较结果为平水期[182.3mg·(m2·d)–1]>丰水期[94.0 mg·(m2·d)-1]>枯水期[29.5 mg·(m2·d)-1],而底泥污染严重的下游点位释放通量高于其它断面;丰水期底泥为上覆水NO3--N的源,平水期和丰水期则成汇,且平水期底泥平均吸附速率若为枯水期的6倍;全年NO2--N交换过程表现底泥吸附的特征,枯水期交换速率极低,全年底泥DIN输入量>输出量,底泥对高浓度上覆水NO3--N的吸附作用可能是底泥污染逐渐加重的原因。
The behavior of different nitrogen forms at sediment-water surface was studied, based on the simulated experiments on the release of IN at 4 sites in high flow period, mean flow period and low flow period in Changzhou segment of the grand canal. Results showed that NH4+-N was released from sediment to overlying water all the year; the exchange rates were 182.3 mg·(m2·d)–1during high flow period, 94.0mg·(m2·d)–1during mean flow period and 29.5 mg·(m2·d)–1 during low flow period following descending order,while the fluxes at downstream sites where was seriously polluted were proved to be higher than those at other sites, sediment was acted as the main source of NO3--N in overlying water in high flow period, while it was the sink in the mean and low flow periods. In addition, the adsorption rate during mean flow period was 6times as that inlow flow period; The exchange behaviors of NO2--N were represented as the characteristics of sediment adsorption, while an extremely low exchange rate occurred in low flow period. Generallly, the amount of DIN inputs into the sediment was much more higher than the output from the sediment.Sedimentary sdsorption on the NO3--N with high levels in the overlying waters might be the reason why the sediment pollution aggravated gradually.
引文
[1]Kuwabara J S,Woods P F,Berelson W M,et al.Importance of sediment-water interactions in Coeur d’Alene Lake,Idaho,USA:management implications[J].Environmental Management,2003,32:348-359.
    [2]Berelson W M,Heggie D,Longmore A,et al.Benthic Nutrient Recycling in Port Phillip Bay,Australia[J].Estuarine,Coastal and Shelf Science,1998,46:917-934.
    [3]贺宝根,周乃晟,袁宣民.底泥对河流二次污染浅析[J].环境污染与防治,1999,21(3):41-43.
    [4]张路,范成新,王建军,等.太湖水土界面氮磷交换通量的时空差异[J].环境科学,2006,27(8):1537-1543.
    [5]王雪,余辉,燕姝雯,等.太湖流域上游河流污染空间分布特征研究[J].长江流域资源与环境,2012,21(3):342-347.
    [6]国家环境保护总局.水与废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002.
    [7]于军亭,张帅,张志斌,等.环境因子对浅水湖泊沉积物中氮释放的影响[J].山东建筑大学学报,2005,60(3):328-336.
    [8]姚思鹏,李柯,周德勇,等.霍甫水丝蚓对太湖梅梁湾沉积物影响-水界面无机氮、磷交换[J].环境科学与技术,2005,60(3):100-104.
    [9]孙珊,李佳蕙,靳洋,等.烟台四十里湾海域营养盐和沉积物-水界面交换通量[J].海洋环境科学,2012,31(2):195-200.
    [10]陈振楼,王东启,许世远,等.长江口潮滩沉积物-水界面无机氮交换通量[J].地理学报,2005,60(2):328-336.
    [11]延霜.水体-沉积物界面氮迁移转化的生物化学过程[D].西安:西安建筑科技大学市政工程系,2012.
    [12]何桐,谢健,余汉生,等.大亚湾表层沉积物中氮的形态分布特征[J].热带海洋学报,2009,28(2):86-91.
    [13]马红波,宋金明,吕晓霞,等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学,2003,32(1):48-53.
    [14]宋金明.中国近海沉积物-海水界面化学[M].北京:海洋出版社,1997,118-122.
    [15]吕晓霞,宋金明,李学刚,等.北黄海沉积物中氮的地球化学特征及其早期成岩作用[J].地质学报,2005,79(1):114-123.
    [16]戴树桂,张明顺,庄源益.底泥中氮的主要迁移转化过程及其转化模型的研究[J].环境科学学报,1990,10(1):1-9.
    [17]范成新,张路,秦伯强,等.太湖沉积物-水界面生源要素迁移机制及定量化-1.铵态氮释放速率的空间差异及源-汇通量[J].湖泊科学,2004,16(1):10-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700