用户名: 密码: 验证码:
Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites
  • 作者:Yan ; Kong ; Yuan ; Zhuang ; Zhiyong ; Han ; Jianwei ; Yu ; Baoyou ; Shi ; Kun ; Han ; Haotian ; Hao
  • 英文作者:Yan Kong;Yuan Zhuang;Zhiyong Han;Jianwei Yu;Baoyou Shi;Kun Han;Haotian Hao;Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;College of Petrochemical Engineering,Lanzhou University of Technology;University of Chinese Academy of Sciences;
  • 英文关键词:Adsorption;;Alginate;;Poly(vinyl alcohol);;Hydrogel;;Methylene Blue
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;College of Petrochemical Engineering,Lanzhou University of Technology;University of Chinese Academy of Sciences;
  • 出版日期:2019-03-08
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.78
  • 基金:supported by the National Key R & D Program of China (No.2016YFA0203204)
  • 语种:英文;
  • 页:HJKB201904008
  • 页数:11
  • CN:04
  • ISSN:11-2629/X
  • 分类号:83-93
摘要
Hydrogels have attracted large attention in wastewater treatment fields due to their low-cost and good interaction with pollutants,among which novel double network hydrogel is an outstanding class.To expand the application of double network hydrogel in water treatment,in this study,eco-friendly physically cross-linked double network polymer hydrogel beads(DAP)are prepared and studied in depth on the mechanism of Methylene Blue(MB)adsorption;and then the polymer hydrogels are further functionalized by inorganic materials.MB adsorption on DAP favors alkaline condition which is due to the increase of electrostatic attraction and adsorption site,and it reaches equilibrium within 10 hr,which is faster than that of the single network hydrogel beads(SAP).Through thermodynamics study,the process shows to be an exothermic and spontaneous process.The adsorption isotherms are well fitted by Langmuir model,with a maximum monolayer adsorption capacity of 1437.48 mg/g,which is larger than SAP(1255.75 mg/g).After being functionalized with common inorganic materials including activated carbon,Fe_3O_4and graphene oxide(GO),the composites show to have larger pore sizes and have obvious increases in adsorption capacity especially the one contains GO.Then the composites contains Fe_3O_4are used as heterogeneous Fenton catalyst which shows to have excellent performance in MB degradation.The results indicate the potential of polymer double network to be functionalized in environmental areas.
        Hydrogels have attracted large attention in wastewater treatment fields due to their low-cost and good interaction with pollutants,among which novel double network hydrogel is an outstanding class.To expand the application of double network hydrogel in water treatment,in this study,eco-friendly physically cross-linked double network polymer hydrogel beads(DAP)are prepared and studied in depth on the mechanism of Methylene Blue(MB)adsorption;and then the polymer hydrogels are further functionalized by inorganic materials.MB adsorption on DAP favors alkaline condition which is due to the increase of electrostatic attraction and adsorption site,and it reaches equilibrium within 10 hr,which is faster than that of the single network hydrogel beads(SAP).Through thermodynamics study,the process shows to be an exothermic and spontaneous process.The adsorption isotherms are well fitted by Langmuir model,with a maximum monolayer adsorption capacity of 1437.48 mg/g,which is larger than SAP(1255.75 mg/g).After being functionalized with common inorganic materials including activated carbon,Fe_3O_4 and graphene oxide(GO),the composites show to have larger pore sizes and have obvious increases in adsorption capacity especially the one contains GO.Then the composites contains Fe_3O_4 are used as heterogeneous Fenton catalyst which shows to have excellent performance in MB degradation.The results indicate the potential of polymer double network to be functionalized in environmental areas.
引文
Ahmed,E.M.,2015.Hydrogel:preparation,characterization,and applications:a review.J.Adv.Res.6:105-121.https://doi.org/10.1016/j.jare.2013.07.006.
    Auta,M.,Hameed,B.H.,2012.Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of Methylene Blue.Chem.Eng.J.198-199:219-227.https://doi.org/10.1016/j.cej.2012.05.075.
    Bao,Q.,Zhang,H.,Yang,J.X.,Wang,S.,Tang,D.Y.,Jose,R.,et al.,2010.Graphene-polymer nanofiber membrane for ultrafast photonics.Adv.Funct.Mater.20:782-791.https://doi.org/10.1002/adfm.200901658.
    Barkoula,N.M.,Alcock,B.,Cabrera,N.O.,Peijs,T.,2008.Fatigue properties of highly oriented polypropylene tapes and allpolypropylene composites.Polym.Polym.Compos.16:101-113.https://doi.org/10.1002/pc.
    Cheng,S.,Oatley,D.L.,Williams,P.M.,Wright,C.J.,2012.Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters.Water Res.46:33-42.https://doi.org/10.1016/j.watres.2011.10.011.
    Dai,H.,Huang,Y.,Huang,H.,2018.Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue.Carbohydr.Polym.185:1-11.https://doi.org/10.1016/j.carbpol.2017.12.073.
    Dragan,E.S.,Apopei Loghin,D.F.,2013.Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix.Chem.Eng.J.234:211-222.https://doi.org/10.1016/j.cej.2013.08.081.
    Dutta,D.,Thakur,D.,Bahadur,D.,2015.SnO2quantum dots decorated silica nanoparticles for fast removal of cationic dye(Methylene Blue)from wastewater.Chem.Eng.J.281:482-490.https://doi.org/10.1016/j.cej.2015.06.110.
    Dwivedi,C.,Pathak,S.K.,Kumar,M.,Tripathi,S.C.,Bajaj,P.N.,2015.Preparation and characterization of potassium nickel hexacyanoferrate-loaded hydrogel beads for the removal of cesium ions.Environ.Sci.Water Res.Technol.1:153-160.https://doi.org/10.1039/C4EW00021H.
    Forgacs,E.,Cserháti,T.,Oros,G.,2004.Removal of synthetic dyes from wastewaters:a review.Environ.Int.30:953-971.https://doi.org/10.1016/j.envint.2004.02.001.
    Fosso-Kankeu,E.,Mittal,H.,Mishra,S.B.,Mishra,A.K.,2015.Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes.J.Ind.Eng.Chem.22:171-178.https://doi.org/10.1016/j.jiec.2014.07.007.
    Gong,J.P.,Katsuyama,Y.,Kurokawa,T.,Osada,Y.,2003.Doublenetwork hydrogels with extremely high mechanical strength.Adv.Mater.15:1155-1158.https://doi.org/10.1002/adma.200304907.
    Greluk,M.,Hubicki,Z.,2013.Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions.Chem.Eng.Res.Des.91:1343-1351.https://doi.org/10.1016/j.cherd.2013.01.019.
    Gusm?o,K.A.G.,Gurgel,L.V.A.,Melo,T.M.S.,Gil,L.F.,2013.Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride(EDTAD)in aqueous solutions:kinetic and equilibrium aspects.J.Environ.Manag.118:135-143.https://doi.org/10.1016/j.jenvman.2013.01.017.
    Han,R.,Zhang,J.,Han,P.,Wang,Y.,Zhao,Z.,Tang,M.,2009.Study of equilibrium,kinetic and thermodynamic parameters about Methylene Blue adsorption onto natural zeolite.Chem.Eng.J.145:496-504.https://doi.org/10.1016/j.cej.2008.05.003.
    Hua,S.,Ma,H.,Li,X.,Yang,H.,Wang,A.,2010.pH-sensitive sodium alginate/poly(vinyl alcohol)hydrogel beads prepared by combined Ca2+crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium.Int.J.Biol.Macromol.46:517-523.https://doi.org/10.1016/j.ijbiomac.2010.03.004.
    Krishna Rao,K.S.V.,Subha,M.C.S.,Vijaya Kumar Naidu,B.,Sairam,M.,Mallikarjuna,N.N.,Aminabhavi,T.M.,2006.Controlled release of diclofenac sodium and ibuprofen through beads of sodium alginate and hydroxy ethyl cellulose blends.J.Appl.Polym.Sci.102:5708-5718.https://doi.org/10.1002/app.25087.
    Lau,Y.Y.,Wong,Y.S.,Teng,T.T.,Morad,N.,Rafatullah,M.,Ong,S.A.,2014.Coagulation-flocculation of azo dye acid orange 7with green refined laterite soil.Chem.Eng.J.246:383-390.https://doi.org/10.1016/j.cej.2014.02.100.
    Liu,Y.,Zheng,Y.,Wang,A.,2010.Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly(acrylic acid)/vermiculite hydrogel composites.J.Environ.Sci.22:486-493.https://doi.org/10.1016/S1001-0742(09)60134-0.
    Liu,Y.,Wang,W.,Jin,Y.,Wang,A.,2011.Adsorption behavior of methylene blue from aqueous solution by the hydrogel composites based on attapulgite.Sep.Sci.Technol.46:858-868.https://doi.org/10.1080/01496395.2010.528502.
    Luo,X.,Zhan,Y.,Huang,Y.,Yang,L.,Tu,X.,Luo,S.,2011.Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer.J.Hazard.Mater.187:274-282.https://doi.org/10.1016/j.jhazmat.2011.01.009.
    Luo,J.,Luo,X.,Crittenden,J.,Qu,J.,Bai,Y.,Peng,Y.,Li,J.,2015.Removal of antimonite(Sb(III))and antimonate(Sb(V))from aqueous solution using carbon nanofibers that are decorated with zirconium oxide(ZrO2).Environ.Sci.Technol.49:11115-11124.https://doi.org/10.1021/acs.est.5b02903.
    Luo,J.,Luo,X.,Hu,C.,Crittenden,J.C.,Qu,J.,2016.Zirconia(ZrO2)embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies.ACS Appl.Mater.Interfaces 8:18912-18921.https://doi.org/10.1021/acsami.6b06046.
    Luo,J.,Meng,X.,Crittenden,J.,Qu,J.,Hu,C.,Liu,H.,et al.,2018.Arsenic adsorption onΑ-MnO2nanofibers and the significance of(1 0 0)facet as compared with(1 1 0).Chem.Eng.J.331:492-500.https://doi.org/10.1016/j.cej.2017.08.123.
    Mahdavinia,G.R.,Asgari,A.,2013.Synthesis of kappacarrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye.Polym.Bull.70:2451-2470.https://doi.org/10.1007/s00289-013-0966-4.
    Martínez-Gómez,F.,Guerrero,J.,Matsuhiro,B.,Pavez,J.,2017.In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels.Carbohydr.Polym.155:182-191.https://doi.org/10.1016/j.carbpol.2016.08.079.
    Mezohegyi,G.,van der Zee,F.P.,Font,J.,Fortuny,A.,Fabregat,A.,2012.Towards advanced aqueous dye removal processes:a short review on the versatile role of activated carbon.J.Environ.Manag.102:148-164.https://doi.org/10.1016/j.jenvman.2012.02.021.
    Mohammed,N.,Grishkewich,N.,Waeijen,H.A.,Berry,R.M.,Tam,K.C.,2016.Continuous flow adsorption of Methylene Blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns.Carbohydr.Polym.136:1194-1202.https://doi.org/10.1016/j.carbpol.2015.09.099.
    Morris,W.,Leung,B.,Furukawa,H.,Yaghi,O.K.,He,N.,Hayashi,H.,et al.,2010.A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks.J.Am.Chem.Soc.11006-11008.https://doi.org/10.1021/jp3096192.
    Pongjanyakul,T.,Puttipipatkhachorn,S.,2007.Xanthan-alginate composite gel beads:molecular interaction and in vitro characterization.Int.J.Pharm.331:61-71.https://doi.org/10.1016/j.ijpharm.2006.09.011.
    ?ahin,?.,Kaya,M.,Saka,C.,2015.Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue.Appl.Clay Sci.116-117:46-53.https://doi.org/10.1016/j.clay.2015.08.015.
    Shi,Y.,Xiong,D.,Li,J.,Wang,N.,2016.The water-locking and cross-linking effects of graphene oxide on the load-bearing capacity of poly(vinyl alcohol)hydrogel.RSC Adv.6:82467-82477.https://doi.org/10.1039/C6RA21272G.
    Tian,C.,Zhang,Q.,Wu,A.,Jiang,M.,Liang,Z.,Jiang,B.,et al.,2012.Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation.Chem.Commun.48:2858.https://doi.org/10.1039/c2cc16434e.
    Wang,Q.,Tian,S.,Ning,P.,2014.Degradation mechanism of Methylene Blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene.Ind.Eng.Chem.Res.53:643-649.https://doi.org/10.1021/ie403402q.
    Wu,D.,Zheng,P.,Chang,P.R.,Ma,X.,2011.Preparation and characterization of magnetic rectorite/iron oxide nanocomposites and its application for the removal of the dyes.Chem.Eng.J.174:489-494.https://doi.org/10.1016/j.cej.2011.09.029.
    Xiong,L.,Yang,Y.,Mai,J.,Sun,W.,Zhang,C.,Wei,D.,et al.,2010.Adsorption behavior of methylene blue onto titanate nanotubes.Chem.Eng.J.156:313-320.https://doi.org/10.1016/j.cej.2009.10.023.
    Yagub,M.T.,Sen,T.K.,Afroze,S.,Ang,H.M.,2014.Dye and its removal from aqueous solution by adsorption:a review.Adv.Colloid Interf.Sci.209:172-184.https://doi.org/10.1016/j.cis.2014.04.002.
    Yu,C.,Wang,F.,Zhang,C.,Fu,S.,Lucia,L.A.,2016.The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent.React.Funct.Polym.106:137-142.https://doi.org/10.1016/j.reactfunctpolym.2016.07.016.
    Zhang,G.,Yi,L.,Deng,H.,Sun,P.,2014.Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent.J.Environ.Sci.26:1203-1211.https://doi.org/10.1016/S1001-0742(13)60513-6.
    Zheng,S.,Mi,B.,2016.Emerging investigators series:silicacrosslinked graphene oxide membrane and its unique capability in removing neutral organic molecules from water.Environ.Sci.Water Res.Technol.2:717-725.https://doi.org/10.1039/C6EW00070C.
    Zhou,C.,Wu,Q.,Lei,T.,Negulescu,I.I.,2014.Adsorption kinetic and equilibrium studies for Methylene Blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels.Chem.Eng.J.251:17-24.https://doi.org/10.1016/j.cej.2014.04.034.
    Zhou,G.,Luo,J.,Liu,C.,Chu,L.,Crittenden,J.,2018.Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents.Water Res.131:246-254.https://doi.org/10.1016/j.watres.2017.12.067.
    Zhuang,Y.,Yu,F.,Ma,J.,Chen,J.,2015.Graphene as a template and structural scaffold for the synthesis of a 3D porous bioadsorbent to remove antibiotics from water.RSC Adv.5:27964-27969.https://doi.org/10.1039/C4RA12413H.
    Zhuang,Y.,Yu,F.,Chen,H.,Zheng,J.,Ma,J.,Cheng,J.H.,2016a.Alginate/graphene double-network nanocomposite hydrogel bead with low-swelling,enhanced mechanical property,and enhanced adsorption capacity.J.Mater.Chem.A 4:10885-10892.https://doi.org/10.1039/C6TA02738E.
    Zhuang,Y.,Yu,F.,Chen,J.,Ma,J.,2016b.Batch and column adsorption of methylene blue by graphene/alginate nanocomposite:comparison of single-network and double-network hydrogels.J.Environ.Chem.Eng.4:147-156.https://doi.org/10.1016/j.jece.2015.11.014.
    Zhuang,Y.,Kong,Y.,Han,K.,Hao,H.,Shi,B.,2017.Physically cross-linked self-healable double network polymer hydrogel as framework for nanomaterial.New J.Chem.https://doi.org/10.1039/C7NJ03392C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700