用户名: 密码: 验证码:
单晶LiNi_(0.6)Co_(0.2)Mn_(0.199)Zr_(0.001)O_2材料的合成及性能改善研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on synthesis and performance improvement of single crystal LiNi_(0.6)Co_(0.2)Mn_(0.199)Zr_(0.001)O_2
  • 作者:李文升 ; 许国峰 ; 刘攀 ; 樊勇利
  • 英文作者:LI Wen-sheng;XU Guo-feng;LIU Pan;FAN Yong-li;Tianjin Institute of Power Sources;
  • 关键词:单晶 ; 晶体结构 ; 电性能 ; 阻抗
  • 英文关键词:single crystal;;crystal structure;;electrochemical performance;;impedance
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:中国电子科技集团公司第十八研究所;
  • 出版日期:2019-07-20
  • 出版单位:电源技术
  • 年:2019
  • 期:v.43;No.346
  • 语种:中文;
  • 页:DYJS201907006
  • 页数:4
  • CN:07
  • ISSN:12-1126/TM
  • 分类号:22-25
摘要
利用共沉淀反应合成Ni_(0.6)Co_(0.2)Mn_(0.199)Zr_(0.001)(OH)_2前驱体,配锂经900℃高温烧结12 h制得平均粒径为3~5 mm的Li Ni_(0.6)Co_(0.2)Mn_(0.199)Zr_(0.001)O_2单晶材料。经喷雾干燥及450℃高温分解4 h制得Al_2O_3包覆单晶Li Ni0.6Co0.2Mn0.199Zr0.001O2复合材料。利用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)、电感耦合等离子体光谱分析法(ICP)对材料进行分析,结果表明:Al2O3以非晶态包覆于颗粒表面且不改变材料的晶体结构与形貌特征;包覆0.25%(质量分数)Al_2O_3材料首次放电比容量为163.4 m Ah/g,0.2 C下循环100次后容量保持率为98.69%,5 C/0.2 C容量保持率为78.6%;包覆Al_2O_3有效降低了电极阻抗,抑制了过渡金属离子溶解,包覆0.25%Al_2O_3的材料阻抗最小,电解液中过渡金属离子含量也最低。综合性能的提升证明Al_2O_3包覆层能抑制活性物质与电解液界面副反应,提高材料的结构稳定性。
        Ni_(0.6)Co_(0.2)Mn_(0.199)Zr_(0.001)(OH)_2 and single crystal LiNi_(0.6)Co_(0.2)Mn_(0.199)Zr_(0.001)O_2 material with average diameter of 3-5μm were synthesized by co-precipitation reaction and high temperature sintering(900 ℃-12 h). The single crystal Li Ni0.6 Co0.2 Mn0.199 Zr0.001 O2 material was coated with Al_2O_3 by spray drying and following heat treatment(450 ℃-4 h).The prepared samples were characterized by XRD, SEM, TEM and ICP. The results show that amorphous Al_2O_3 is coated well on the surface of Li Ni0.6 Co0.2 Mn0.199 Zr0.001 O2 and makes no change for the local structure. The sample coated with 0.25% Al_2O_3 can deliver an initial specific capacity of 163.4 m Ah/g(2.8-4.25 V, 0.1 C), the capacity retention is 98.69% after 100 cycles at 0.2 C(2.8-4.5 V), and the capacity ratio of 5 C/0.2 C is 78.6%. Impedance and content of Ni, Co, and Mn in electrolyte of the sample coated with 0.25% Al_2O_3 are lower than other samples. It is confirmed that the Al_2O_3 layer can restrain side reactions at electrode/electrolyte interface, inhibit the dissolution of transition metal ions into the electrolyte, apparently suppress the increase of resistance and enhance structure stability.
引文
[1] CAO C H, ZHANG J, XIE X H, et al. Composition, structure, and performance of Ni-based cathodes in lithium ion batteries[J]. Ionics, 2017, 23:1337-1356.
    [2] JIAO L S, LIU Z B, SUN Z H, et al. An advanced lithium ion battery based on a high quality graphitic graphene anode and a LiNi0.6Co0.2Mn0.2O2cathode[J]. Electrochimica Acta, 2018, 259:48-55.
    [3] CHEN Z Q, WANG J, HUANG J X, et al. The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 363:168-176.
    [4] YUAN J, WEN J W, ZHANG J B, et al. Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2-Mn0.2O2cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2017, 230:116-122.
    [5] REN D, SHEN Y, YANG Y, et al. Systematic optimization of battery materials:key parameter optimization for the scalable synthesis of uniform, high-energy and high stability LiNi0.6Mn0.2Co0.2O2cathode material for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(41):35811-35819.
    [6] HILDEBRAND S, VOLLMER C, WINTER M, et al. Al2O3, SiO2and TiO2as coatings for safer LiNi0.8Co0.15Al0.05O2cathodes:electrochemical performance and thermal analysis by accelerating rate calorimetry[J]. Journal of the Electrochemical Society, 2017, 164(9):A2190-A2198.
    [7] ABE M, IBA H, SUZUKI K, et al. Study on the deterioration mechanism of layered rock-salt electrodes using epitaxial thin films Li(Ni, Co, Mn)O2and their Zr-O surface modified electrodes[J]. Journal of Power Sources, 2017, 345:108-119.
    [8] MORETTI A, KIM G T, BRESSER D, et al. Investigation of different binding agents for nanocrystalline anatase TiO2anodes and its application in a novel, green lithium-ion battery[J]. Journal of Power Sources, 2013, 221:419-426.
    [9] SHI S J, TU J P, MAI Y J, et al. Structure and electrochemical performance of CaF 2coated LiNi1/3Co1/3Mn1/3O2cathode material for Li-ion batteries[J]. Electrochimica Acta, 2012, 83:105-112.
    [10] LI J, LI H Y, STONE W, et al. Synthesis of single crystal LiNi0.5-Mn0.3Co0.2O2for lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14):A3529-A3537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700