用户名: 密码: 验证码:
Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites
  • 作者:Li ; Chao ; Li ; Hongnan ; Hao ; Hong ; Bi ; Kaiming ; Tian ; Li
  • 英文作者:Li Chao;Li Hongnan;Hao Hong;Bi Kaiming;Tian Li;State Key Laboratory of Coastal and Offshore Engineering,Faculty of Infrastructure Engineering,Dalian University of Technology;School of Civil Engineering,Shenyang Jianzhu University;Center for Infrastructure Monitoring and Protection,School of Civil and Mechanical Engineering,Curtin University;School of Civil Engineering,Guangzhou University;School of Civil Engineering,Shandong University;
  • 英文关键词:seismic motion simulation;;onshore and offshore sites;;ground motion spatial variation;;depth-varying motions;;transfer function
  • 中文刊名:EEEV
  • 英文刊名:地震工程与工程振动(英文版)
  • 机构:State Key Laboratory of Coastal and Offshore Engineering,Faculty of Infrastructure Engineering,Dalian University of Technology;School of Civil Engineering,Shenyang Jianzhu University;Center for Infrastructure Monitoring and Protection,School of Civil and Mechanical Engineering,Curtin University;School of Civil Engineering,Guangzhou University;School of Civil Engineering,Shandong University;
  • 出版日期:2018-07-12
  • 出版单位:Earthquake Engineering and Engineering Vibration
  • 年:2018
  • 期:v.17
  • 基金:National Key R&D Program of China under Grant No.2016YFC0701108;; the State Key Program of National Natural Science Foundation of China under Grant No.51738007
  • 语种:英文;
  • 页:EEEV201803004
  • 页数:16
  • CN:03
  • ISSN:23-1496/P
  • 分类号:33-48
摘要
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures.
        This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures.
引文
Bi KM and Hao H(2011),“Influence of Irregular Topography and Random Soil Properties on Coherency Loss of Spatial Seismic Ground Motions,”Earthquake Engineering and Structural Dynamics,40(9):1045?1061.
    Bi KM and Hao H(2012),“Modelling and Simulation of Spatially Varying Earthquake Ground Motions at Sites with Varying Conditions,”Probabilistic Engineering Mechanics,29:92?104.
    Bi KM and Hao H(2013),“Numerical Simulation of Pounding Damage to Bridge Structures under Spatially Varying Ground Motions,”Engineering Structures,46:62?76.
    Boore DM and Smith CE(1999),“Analysis of Earthquake Recordings Otained from the Seafloor Earthquake Measurement System(SEMS)Instruments Deployed off the Coast of Southern California,”Bulletin of the Seismological Society of America,89(1):260?274.
    Boore DM,Stephens CD,and Joyner WB(2002),“Comments on Baseline Correction of Digital StrongMotion Data:Examples from the 1999 Hector Mine,California,earthquake,”Bulletin of the Seismological Society of America,92(4):1543?1560.
    Boulanger RW,Curras CJ,Kutter BL,Wilson DWand Abghari A(1999),“Seismic Soil-Pile-Structure Interaction Experiments and Analyses,”Journal of Geotechnical and Geoenvironmental Engineering,125(9):750?759.
    Chen BK,Wang DS,Li HN,Sun ZG,and Shi Y(2015),“Characteristics of Earthquake Ground Motion on the Seafloor,”Journal of Earthquake Engineering,19:874?904.
    Clough RW and Penzien J(1993),Dynamic of Structures,Mc Graw Hill,New York.
    Crouse CB and Quilter J(1991),“Seismic Hazard Analysis and Development of Design Spectra for Maul A Platform,”Proc.of Pacific Conference on Earthquake Engineering,New Zealand,137?148.
    Der Kiureghian A(1996),“A Coherency Model for Spatially Varying Ground Motions,”Earthquake Engineering and Structural Dynamics,25(1):99?111.
    Deodatis G(1996),“Non-Stationary Stochastic Vector Processes:Seismic Ground Motion Applications,”Probabilistic Engineering Mechanics,11(3):149?167.
    Diao HQ,Hu JJ and Xie LL(2014),“Effect of Seawater on Incident Plane P and SV Waves at Ocean Bottom and Engineering Characteristics of Offshore Ground Motion Records off the Coast of Southern California,USA,”Earthquake Engineering and Engineering Vibration13(2):181?194.
    Guo X,Wu Y and Guo Y(2016),“Time-Dependent Seismic Fragility Analysis of Bridge Systems under Scour Hazard and Earthquake Loads,”Engineering Structures,121:52?60.
    Hao H,Oliveira CS and Penzien J(1989),“MultipleStation Ground Motion Processing and Simulation Based on SMART-1 Array Data,”Nuclear Engineering and Design 111(3):293?310.
    Hao H(1989),“Effects of Spatial Variation of Ground Motions on Large Multiply-Supported Structures,”UCB/EERC-89-06,University of California,Berkeley,California.
    Hao H and Chouw N(2006),“Modelling of Earthquake Ground Motion Spatial Variation on Uneven Sites with Varying Soil conditions,”Proc.of 9th International Symposium on Structural Engineering for Young Experts,Fuzhou,China,79?85.
    Hu JJ,Diao HQ and Xie LL(2016),“Review of Observation and Characteristics of Seafloor Strong Motion,”Journal of Earthquake Engineering and Engineering Dynamics,33(6):1?8.(in Chinese)
    Idriss I and Sun JI(1992),User’s Manual for SHAKE91,Department of Civil and Environmental Engineering,University of California Davis.
    Liao S and Zerva A(2006),“Physically Compliant,Conditionally Simulated Spatially Variable Seismic Ground Motions for Performance-Based Design,”Earthquake Engineering and Structural Dynamics,35(7):891?919.
    Li C,Hao H,Li HN and Bi KM(2015),“Theoretical Modeling and Numerical Simulation of Seismic Motions at Seafloor,”Soil Dynamics and Earthquake Engineering,77:220?225.
    Li C,Hao H,Li HN and Bi KM(2016),“Seismic Fragility Analysis of Reinforced Concrete Bridges with Chloride Induced Corrosion Subjected to Spatially Varying Ground Motions,”International Journal of Structural Stability and Dynamics,16(5):1550010.
    Li C,Hao H,Li HN,Bi KM and Chen BK(2017),“Modeling and Simulation of Spatially Correlated Ground Motions at Multiple Onshore and Offshore Sites,”Journal of Earthquake Engineering,21(3):359?383.
    Matlock H,Foo SHC and Bryant LM(1978),“Simulation of Lateral Pile Behavior under Earthquake motion,”Proc.of the Specialty Conference on Earthquake Engineering and Soil Dynamics,ASCE,California,USA,600?619.
    Qi YH,Pei CY and An PC(2014),“Geological Analysis of DB01 Bid Section of Hong Kong-Zhu Hai-Macao Bridge Project,”Port Engineering Technology,51(5):82?85.
    Shinozuka M(1971),“Simulation of Multivariate and Multidimensional Random Processes,”The Journal of the Acoustical Society of America,49(1B):357?368.
    Shinozuka M and Jan CM(1972),“Digital Simulation of Random Processes and Its Applications,”Journal of Sound and Vibration,25(1):111?128.
    Shinozuka M and Deodatis G(1991),“Simulation of Stochastic Processes by Spectral Representation,”Applied Mechanics Reviews 44(4):191?204.
    Sobczky K(1991),Stochastic Wave Propagation,Kluwer Academic Publishers,Netherlands.
    Soneji BB and Jangid RS(2008),“Influence of SoilStructure Interaction on the Response of Seismically Isolated Cable-Stayed Bridge,”Soil Dynamics and Earthquake Engineering,28:245?257.
    Su QK and Xie HB(2016),“Summary of Steel Bridge Construction of Hong Kong-Zhuhai-Macao Bridge,”China Journal of Highway and Transport,29(12):1?9.(in Chinese)
    Wang S,Kutter BL,Chacko MJ,Wilson DW,Boulanger RW and Abghari A(1998),“Nonlinear Seismic SoilPile-Structure Interaction,”Earthquake Spectra,14(2):377?396.
    Wang Z,Duenas-Osorio L and Padgett JE(2013),“Seismic Response of a Bridge-Soil-Foundation System under the Combined Effect of Vertical and Horizontal Ground Motions,”Soil Dynamics and Earthquake Engineering,42(4):545?564.
    Wolf JP(1985),Dynamic Soil-Structure Interaction,Prentice Hall,Englewood Cliffs,New Jersey.
    Wu YX,Gao YF and Li DY(2011),“Simulation of Spatially Correlated Earthquake Ground Motions for Engineering Purposes,”Earthquake Engineering and Engineering Vibration,10(2):163?173.
    Wu YX,Gao YF,Li DY,Xu CJ and Mahfouz AH(2013),“Approximation Approach to the SRM Based on Root Decomposition in the Simulation of Spatially Varying Ground Motions,”Earthquake Engineering and Engineering Vibration,12(3):363?372.
    Yang J and Sato T(2000),“Interpretation of Seismic Vertical Amplification Observed at an Array Site,”Bulletin of the Seismological Society of America,90(2):275?285.
    Yang Q,Saiidi MS,Hang W and Itani A(2002),“Influence of Earthquake Ground Motion Incoherency on Multi-Support Structures,”Earthquake Engineering and Engineering Vibration,1(2):167?180.
    Zhang DY,Liu W,Xie WC and Pandey MD(2013),“Modeling of Spatially Correlated,Site-Reflected,and Nonstationary Ground Motions Compatible with Response Spectrum,”Soil Dynamics and Earthquake Engineering,55:21?32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700