用户名: 密码: 验证码:
Biostratigraphy versus isotope geochronology: Testing the Urals island arc model
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biostratigraphy versus isotope geochronology: Testing the Urals island arc model
  • 作者:Svetlana ; Tessalina ; Cristina ; Talavera ; Michael ; E.Pritchin ; Victor ; Puchkov
  • 英文作者:Svetlana Tessalina;Cristina Talavera;Michael E. Pritchin;Victor Puchkov;John de Laeter Centre for Isotope Research, Curtin University;The Institute for Geoscience Research (TIGeR), Curtin University;School of GeoSciences;Institute of Geology and Geochemistry, Urals Branch of Russian Academy of Sciences;Institute of Geology, Ufimian Scientific Investigation Centre;
  • 英文关键词:Urals;;Volcanic-hosted massive sulphide deposits;;U-Pb dating;;Geochronology
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:John de Laeter Centre for Isotope Research, Curtin University;The Institute for Geoscience Research (TIGeR), Curtin University;School of GeoSciences;Institute of Geology and Geochemistry, Urals Branch of Russian Academy of Sciences;Institute of Geology, Ufimian Scientific Investigation Centre;
  • 出版日期:2019-01-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 基金:the funding obtained through the state program with reference number AAAA-A18-118052590028
  • 语种:英文;
  • 页:GSFT201901011
  • 页数:7
  • CN:01
  • ISSN:11-5920/P
  • 分类号:123-129
摘要
Formation of the Urals volcanic-hosted massive sulphide(VHMS) deposits is considered to be related with the intra-oceanic stage of island arc(s) development in the Upper Ordoviciane Middle Devonian based on the biostratigraphic record of ore-hosting sedimentary rocks. However, the direct Re-Os dating of four known VHMS systems in the Urals gives significantly younger Re-Os isochron ages ranging from355 ± 15 Ma up to 366 ± 2 Ma. To address this discrepancy, we performed SHRIMP U-Pb dating on zircons extracted from rhyodacites(Eifelian biostratigraphic age of 393 -388 Ma) from the footwall of the Alexandrinka VHMS deposit which has a Re-Os isochron age of sulphides of 355 ± 15 Ma.New ~(206) Pb/~(238) U mean age of 374 ± 3 Ma(MSWD ? 1.4 and probability ? 0.11) is considered to be the crystallisation age of the host volcanic rock. This age is ca. 15 Ma younger than the Eifelian(393 -388 Ma)biostratigraphic age and overlaps the Frasniane Famennian boundary(372 ± 2 Ma), characterised by the final stages of Magnitogorsk Arc e East European continent collision. Such an inconsistency with geochronological age may be due to a reburial of conodonts during resedimentation as a result of erosion of older rocks in younger sedimentary sequences.
        Formation of the Urals volcanic-hosted massive sulphide(VHMS) deposits is considered to be related with the intra-oceanic stage of island arc(s) development in the Upper Ordoviciane Middle Devonian based on the biostratigraphic record of ore-hosting sedimentary rocks. However, the direct Re-Os dating of four known VHMS systems in the Urals gives significantly younger Re-Os isochron ages ranging from355 ± 15 Ma up to 366 ± 2 Ma. To address this discrepancy, we performed SHRIMP U-Pb dating on zircons extracted from rhyodacites(Eifelian biostratigraphic age of 393 -388 Ma) from the footwall of the Alexandrinka VHMS deposit which has a Re-Os isochron age of sulphides of 355 ± 15 Ma.New ~(206) Pb/~(238) U mean age of 374 ± 3 Ma(MSWD ? 1.4 and probability ? 0.11) is considered to be the crystallisation age of the host volcanic rock. This age is ca. 15 Ma younger than the Eifelian(393 -388 Ma)biostratigraphic age and overlaps the Frasniane Famennian boundary(372 ± 2 Ma), characterised by the final stages of Magnitogorsk Arc e East European continent collision. Such an inconsistency with geochronological age may be due to a reburial of conodonts during resedimentation as a result of erosion of older rocks in younger sedimentary sequences.
引文
Artyushkova, O.V., Maslov, V.A., 2008. Detailed correlation of the Devonian deposits in the South Urals and some aspects of their formation. Bulletin of Geosciences83(4), 391-399. Czech Geological Survey, Prague.
    Beane, R.J., Connelly, J.N., 2000. 40Ar/39Ar, U-Pb, and Sm-Nd constraints on the timing of metamorphic events in the Maksyutov Complex, southern Ural Mountains. Journal of the Geological Society London 157, 811-822.
    Chiaradia, M., Konopelko, D., Seltmann, R., Cliff, R.A., 2006. Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay. Mineralium Deposita 41, 411-428.
    Compston, W., Williams, I.S., Meyer, C.E., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high-mass resolution ion microprobe. In:Proceedings of the Fourteenth Lunar and Planetary Science Conference, Part 2.Journal of Geophysical Research.
    De Laeter, J.R., Kennedy, A.K., 1998. A double focussing mass spectrometer for geochronology. International Journal of Mass Spectrometry and Ion Processes178, 43-50.
    Dubinina, S.V., Ryazantsev, A.V., 2008. Conodont stratigraphy and correlation of the Ordovician volcanogenic and volcanogenic sedimentary sequences in the South Urals. Russian Journal of Earth Sciences 10(5), 1-31.
    Dusel-Bacon, C., Wooden, J.L.,Hopkins, M.J., 2004. U-Pb zircon and geochemical evidence for bimodal mid-Paleozoic magmatism and syngenetic base-metal mineralization in the Yukon-Tanana terrane, Alaska. GSA Bulletin 116(7/8),989-1015. https://doi.org/10.1130/B25342.1.
    Fershtater, G.B., Krasnobaev, A.A., Bea, F., Montero, P., Borodina, N.S., 2007. Geodynamic settings and history of the Paleozoic intrusive magmatism of the Central and southern Urals:results of zircon dating. Geotectonics 41, 465-486.
    Gannoun, A., Tessalina, S., Bourdon, B., Orgeval, J.-J., Birck, J.-L., Allegre, C., 2003.Re-Os isotopic constraints on the genesis and evolution of the Dergamish and Ivanovka Cu(Co, Au)massive sulphide deposits, South Urals, Russia. Chemical Geology 196,107-130.
    Grabezhev, A.I., 2014. The Yubileinoe porphyry Cu-Au deposit(South Urals, Russia):SHRIMPⅡU-Pb zircon age and geochemical features of ore bearing granitoids.Dolkady of Earth Sciences 454, 72-75. Ref in Plot 2017.
    Hannington, M.D., de Ronde, C.E.J., Peterson, S., 2005. Sea-floor Tectonics and Submarine Hydrothermal Systems. Economic Geology 100th Anniversary Volume, pp. 111-141.
    Herrington, R.J., Brown, D., 2011. The generation and preservation of mineral deposits in arc-continent collision environments. In:Brown, D., Ryan, P.D.(Eds.),Arc-continent Collision. Springer-Verlag, Berlin Heidelberg, pp. 145-162.
    Herrington, R., Maslennikov, V., Zaykov, V., Seravkin, I., Kosarev, A., Buschmann, B.,Orgeval, J.-J., Holland, N., Tesalina, S., Nimis, P., Armstrong, R., 2005. Classification of VMS deposits:lessons from the south Uralides. Ore Geology Reviews27, 203-237.
    Herrington, R., Armstrong, R., Zaykov, V., Maslennikov, V., Tesalina, S., Orgeval,J.-J.,Taylor, R.N., 2002. Massive sulphide deposits in the South Urals:geological setting within the framework of the Uralide Orogen. In:Brown, D., Juhlin, C.,Puchkov, V.(Eds.), Mountain Building in the Uralides:Pangea to the Present,Geophysical Monograph, vol. 132, pp. 155-182.
    Huston, D.L., Pehrsson, S., Eglington, B.M., Zaw, K., 2010. The geology and metallogeny of volcanic-hosted massive sulfide deposits:variations through geologic time amd with tectonic setting. Economic Geology 105, 571-591.
    Kennedy, A.K., de Laeter, J.R., 1994. The performance characteristics of the WA SHRIMPⅡion microprobe. In:Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology. Berkeley, USA. Abstracts Vol.,U.S. Geological Survey Circular, vol. 1107, p. 166.
    Ludwig, K.R., 2003. Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel:Berkeley Geochron, Center Spec. Publ. No, vol. 4, p. 70.
    Ludwig, K.R., 2009. SQUIDⅡ.,a User's Manual, Berkeley Geochronology Center Special Publication 2, 2455 Ridge Road, Berkeley, CA 94709, USA, p. 22.
    Maslov, V.A., Artyushkova, O.V., 2010. Stratigraphy and correlation of Devonian deposits of Magnitogorsk zone, South Urals. Design Poligraph Service, Ufa,p. 288, 2010. ISBN:978-5-94423-215-1.(in Russian).
    Plotinskaya, O.Y., Grabezhev, A.I., Tessalina, S.,Seltmann, R., Groznova, E.O.,Abramov, S.S., 2017. Porphyry deposits of the Urals:geological framework and metallogeny. Ore Geology Reviews 85,153-173.
    Prokin, V.A., Buslaev, F.P., 1999. Massive copper-zinc sulphide deposits in the Urals.Ore Geology Reviews 14,1-69.
    Puchkov, V.N., 2017. General features relating to the occurrence of mineral deposits in the Urals:what, where, when and why. Ore Geology Reviews 85, 4-29.
    Puchkov, V.N., 2010. Geology of the Urals and Foreurals:Topical Questions of Tectonics, Geodynamics, and Metallogeny. Dizain Poligraf Service, Ufa, Russia,p. 280(in Russian).
    Rodriguez,J., Cosca, M.A., Ibarguchia,J.I.G., Dallmeyer, R.D., 2003. Strain partitioning and preservation of 40Ar/39Ar ages during Variscan exhumation of a subducted crust(Malpica-Tui complex, NW Spain). Lithos 70,111-139.
    Ronkin, YuL, Pritchin, M.E., Soroka, E.I., Gerdes, A., Puchkov, V.N., Busharina, S.V., 2016.First U-Pb isotopic data on zircon from andesite of the safyanovka Cu-bearing massive sulfide deposit(Middle Urals). Doklady Earth Sciences 469, 665-669.
    Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 2, 207-221.
    Stern, R.S., 2001. A New Isotopic and Trace-element Standard for the Ion Microprobe:Preliminary Thermal Ionization Mass Spectrometry(TIMS)U-pb and Electron-microprobe Data. Geological Survey of Canada. Current Research2001-F1.
    Stern, R.S., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., 2009. Measurement of SIMS instrumental mass fractionation of Pb-isotopes during zircon dating.Geostandards and Geoanalytical Research 33,145-168.
    Tessalina, S.G., Herrington, R.J., Taylor, R.N., Sundblad, K., Maslennikov, V.V.,Orgeval,J.-J., 2016. Lead isotopic systematics of massive sulphide deposits in theUrals:applications for geodynamic setting and metal sources. Ore Geology Reviews 72(1),22-36.
    Tessalina, S.G., Jourdan, F., Belogub, E.V., 2017. Significance of late Devonian-lower Carboniferous ages of hydrothermal sulphides and sericites from the Urals volcanic-hosted massive sulphide deposits. Ore Geology Reviews 85,131-139.
    Tessalina, S., Bourdon, B., Maslennikov, V.V., Orgeval, J.-J., Birck, J.-L., Gannoun, A.,Capmas, F., Allegre, C.-J., 2008. Os isotope distribution within Paleozoic seafloor hydrothermal system in Southern Urals, Russia. Ore Geology Reviews 33, 70-80.
    Tornos, F., Casquet, C., Relvas,J.M.R.S., 2005. 4:transpressional tectonics, lower crust decoupling and intrusion of deep mafic sills:a model for the unusual metallogenesis of SW Iberia. Ore Geology Reviews 27,133-163.
    Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In:McKibben, M.A.,Shanks, W.C., Ridely, W.I.(Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700