用户名: 密码: 验证码:
A novel radial cable for restraining tensile failure in steep fill–rock interfaces
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A novel radial cable for restraining tensile failure in steep fill–rock interfaces
  • 作者:HUANG ; Da ; LI ; Pei-ji ; CEN ; Duo-feng
  • 英文作者:HUANG Da;LI Pei-ji;CEN Duo-feng;School of Civil and Transportation Engineering, Hebei University of Technology;
  • 英文关键词:Fill slope;;Fill–rock interface;;Tensile failure;;Radial cable;;Pullout capacity
  • 中文刊名:SDKB
  • 英文刊名:Journal of Mountain Science 山地科学学报(英文版)
  • 机构:School of Civil and Transportation Engineering, Hebei University of Technology;
  • 出版日期:2019-07-11
  • 出版单位:Journal of Mountain Science
  • 年:2019
  • 期:v.16
  • 基金:financially supported by the National Natural Science Foundation of China (Nos. 41672300 and 41807279)
  • 语种:英文;
  • 页:SDKB201907018
  • 页数:16
  • CN:07
  • ISSN:51-1668/P
  • 分类号:234-249
摘要
It is quite common for fill slopes such as embankments and airport foundations to be constructed in mountainous areas. Steep fill–rock interfaces in such areas undergo tensile failure owing to differences in the stiffness values and tensile strengths of the soil and hard rock. In this study, a new anchor system, termed "radial cable," is proposed to increase the pullout capacity of cables in the fill;this in turn helps control tensile deformation in the fill slope along the interface. In a radial cable, the steel ropes of a conventional cable are equally and symmetrically separated into three sub-cables(a central sub-cable and two branch sub-cables) with a radial distribution starting from the position of the interface. Moreover, each of the sub-cables is fixed in the fill using short U-shaped rigid rods along the cable length and a rigid baffle at its end to further increase pullout resistance. Experimental and numerical uplift tests were conducted to analyze the pullout capacity and anchoring behavior of the radial cables in soil to study the effect of branching. The reinforcement effect of the radial cables was also examined using a case study.
        It is quite common for fill slopes such as embankments and airport foundations to be constructed in mountainous areas. Steep fill–rock interfaces in such areas undergo tensile failure owing to differences in the stiffness values and tensile strengths of the soil and hard rock. In this study, a new anchor system, termed "radial cable," is proposed to increase the pullout capacity of cables in the fill;this in turn helps control tensile deformation in the fill slope along the interface. In a radial cable, the steel ropes of a conventional cable are equally and symmetrically separated into three sub-cables(a central sub-cable and two branch sub-cables) with a radial distribution starting from the position of the interface. Moreover, each of the sub-cables is fixed in the fill using short U-shaped rigid rods along the cable length and a rigid baffle at its end to further increase pullout resistance. Experimental and numerical uplift tests were conducted to analyze the pullout capacity and anchoring behavior of the radial cables in soil to study the effect of branching. The reinforcement effect of the radial cables was also examined using a case study.
引文
Abdi MR,Zandieh AR(2014)Experimental and numerical analysis of large scale pull out tests conducted on clays reinforced with geogrids encapsulated with coarse material.Geotextiles&Geomembranes 42(5):494-504.https://doi.org/10.1016/j.geotexmem.2014.07.008
    Alam MJI,Lo SR,Karim MR(2014)Pull-out behaviour of steel grid soil reinforcement embedded in silty sand.Computers&Geotechnics 56(1):216-226.https://doi.org/10.1016/j.compgeo.2013.12.004
    Armaghani DJ,Faizi K,Hajihassani M,et al.(2015)Effects of soil reinforcement on uplift resistance of buried pipeline.Measurement 64(3):57-63.https://doi.org/10.1016/j.measurement.2014.12.042
    Cen D,Huang D,Ren F(2017)Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface.Acta Geotechnica 12(2):391-413.https://doi.org/10.1007/s11440-016-0468-2
    Chen H,Lee CF,Law KT(2004)Causative mechanisms of rainfall-induced fill slope failures.Journal of Geotechnical&Geoenvironmental Engineering 130(6):593-602.https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(593)
    Day RW(1992)Fill-slope failure and repair.Journal of Performance of Constructed Facilities 6(3):161-168.https://doi.org/10.1061/(ASCE)0887-3828(1992)6:3(161)
    Dickin EA(1988)Uplift behavior of horizontal anchor plates in sand.Journal of Geotechnical Engineering 114(11):1300-1317.https://doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1300)
    Dickin EA,Laman M(2007)Uplift response of strip anchors in cohesionless soil.Advances in Engineering Software 38(8):618-625.https://doi.org/10.1016/j.advengsoft.2006.08.041
    Eid HT,Amarasinghe RS,Rabie KH,et al.(2015)Residual shear strength of fine-grained soils and soil-solid interface at low effective normal stresses.Canadian Geotechnical Journal52(2):198-210.https://doi.org/10.1139/cgj-2014-0019
    Hanna A,Rahman F,Ayadat T(2011)Passive earth pressure on embedded vertical plate anchors in sand.Acta Geotechnica6(1):21-29.https://doi.org/10.1007/s11440-010-0109-0
    Hejazi SM,Sheikhzadeh M,Abtahi SM,et al.(2012)A simple review of soil reinforcement by using natural and synthetic fibers.Construction&Building Materials 30(5):100-116.
    https://doi.org/10.1016/j.conbuildmat.2011.11.045
    Itasca Consulting Group Inc.(2008)PFC2D Particle Flow Code in 2 dimensions user's guide.
    Kouzer KM,Kumar J(2009)Vertical uplift capacity of two interfering horizontal anchors in sand using an upper bound limit analysis.Computers&Geotechnics 36(6):1084-1089.https://doi.org/10.1016/j.compgeo.2009.02.003
    Lajevardi SH,Dias D,Racinais J(2013)Analysis of soil-welded steel mesh reinforcement interface interaction by pull-out tests.Geotextiles&Geomembranes 40(5):48-57.https://doi.org/10.1016/j.geotexmem.2013.08.002
    Li Y(2013)Effects of particle shape and size distribution on the shear strength behavior of composite soils.Bulletin of Engineering Geology&the Environment 72(3-4):371-381.https://doi.org/10.1007/s10064-013-0482-7
    Liu YJ,Hu JM,Wang TW,et al.(2016)Effects of vegetation cover and road-concentrated flow on fillslope erosion in rainfall and scouring simulation tests in the Three Gorges reservoir area,China.Catena 136(1):108-117.https://doi.org/10.1016/j.catena.2015.06.006
    Nazir R,Chuan HS,Niroumand H,et al.(2014)Performance of single vertical helical anchor embedded in dry sand.Measurement 49(1):42-51.https://doi.org/10.1016/j.measurement.2013.11.031
    Niroumand H,Kassim KA(2013)Pullout capacity of irregular shape anchor in sand.Measurement 46(10):3876-3882.https://doi.org/10.1016/j.measurement.2013.07.042
    Niroumand H,Kassim KA,Nazir R(2013)The influence of soil reinforcement on the uplift response of symmetrical anchor plate embedded in sand.Measurement 46(8):2608-2629.https://doi.org/10.1016/j.measurement.2013.04.072
    Rangari SM,Choudhury D,Dewaikar DM(2013)Seismic uplift capacity of shallow horizontal strip anchor under oblique load using pseudo-dynamic approach.Soils&Foundations 53(5):692-707.https://doi.org/10.1016/j.sandf.2013.08.007
    Sawwaf MAE(2007)Behavior of strip footing on geogridreinforced sand over a soft clay slope.Geotextiles&Geomembranes 25(1):50-60.https://doi.org/10.1016/j.geotexmem.2006.06.001
    Sukmak K,Sukmak P,Horpibulsuk S,et al.(2015)Effect of fine content on the pullout resistance mechanism of bearing reinforcement embedded in cohesive-frictional soils.Geotextiles&Geomembranes 43(2):107-117.https://doi.org/10.1016/j.geotexmem.2014.11.010
    Sun HY,Wong LNY,Shang YQ,et al.(2010)Evaluation of drainage tunnel effectiveness in landslide control.Landslides7(4):445-454.https://doi.org/10.1007/s10346-010-0210-3
    Yetimoglu T,Salbas O(2003)A study on shear strength of sands reinforced with randomly distributed discrete fibers.Geotextiles&Geomembranes 21(2):103-110.https://doi.org/10.1016/S0266-1144(03)00003-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700