用户名: 密码: 验证码:
Dietary arachidonate in milk replacer triggers dual benefits of PGE_2 signaling in LPS-challenged piglet alveolar macrophages
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dietary arachidonate in milk replacer triggers dual benefits of PGE_2 signaling in LPS-challenged piglet alveolar macrophages
  • 作者:Kathleen ; R.Walter ; Xi ; Lin ; Sheila ; K.Jacobi ; Tobias ; K?ser ; Debora ; Esposito ; Jack ; Odle
  • 英文作者:Kathleen R.Walter;Xi Lin;Sheila K.Jacobi;Tobias K?ser;Debora Esposito;Jack Odle;Department of Animal Science, Plants for Human Health Institute, North Carolina State University;Department of Animal Science, North Carolina State University;Department of Animal Science, Ohio State University;Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University;
  • 英文关键词:Arachidonic acid;;Cyclooxygenase;;Eicosanoid;;Eicosapentaenoic acid;;Inflammation;;Lipid mediator class switch;;LPS;;Lipoxin;;Porcine alveolar macrophage
  • 中文刊名:XMSW
  • 英文刊名:畜牧与生物技术杂志(英文版)
  • 机构:Department of Animal Science, Plants for Human Health Institute, North Carolina State University;Department of Animal Science, North Carolina State University;Department of Animal Science, Ohio State University;Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Animal Science and Biotechnology
  • 年:2019
  • 期:v.10
  • 基金:funded in part by the North Carolina State University Agricultural Foundation;; USDA-NIFA Animal Health Program
  • 语种:英文;
  • 页:XMSW201902016
  • 页数:14
  • CN:02
  • ISSN:11-5967/S
  • 分类号:185-198
摘要
Background: Respiratory infections challenge the swine industry, despite common medicinal practices. The dual signaling nature of PGE_2(supporting both inflammation and resolution) makes it a potent regulator of immune cell function. Therefore, the use of dietary long chain n-6 PUFA to enhance PGE_2 effects merits investigation.Methods: Day-old pigs(n = 60) were allotted to one of three dietary groups for 21 d(n = 20/diet), and received either a control diet(CON, arachidonate = 0.5% of total fatty acids), an arachidonate(ARA)-enriched diet(LC n-6,ARA = 2.2%), or an eicosapentaenoic(EPA)-enriched diet(LC n-3, EPA = 3.0%). Alveolar macrophages and lung parenchymal tissue were collected for fatty acid analysis. Isolated alveolar macrophages were stimulated with LPS in situ for 24 h, and m RNA was isolated to assess markers associated with inflammation and eicosanoid production.Culture media were collected to assess PGE_2 secretion. Oxidative burst in macrophages was measured by: 1)oxygen consumption and extracellular acidification(via Seahorse), 2) cytoplasmic oxidation and 3) nitric oxide production following 4, 18, and 24 h of LPS stimulation.Results: Concentration of ARA(% of fatty acids, w/w) in macrophages from pigs fed LC n-6 was 86% higher than CON and 18% lower in pigs fed LC n-3(P < 0.01). Following LPS stimulation, abundance of COX-2 and TNF-α mRNA(P < 0.0001), and PGE_2 secretion(P < 0. 01) were higher in LC n-6 PAM vs. CON. However, ALOX5 abundance was1.6-fold lower than CON. Macrophages from CON and LC n-6 groups were 4-fold higher in ALOX12/15 abundance(P < 0.0001) compared to LC n-3. Oxygen consumption and extracellular acidification rates increased over 4 h following LPS stimulation(P < 0.05) regardless of treatment. Similarly, increases in cytoplasmic oxidation(P < 0.001)and nitric oxide production(P < 0.002) were observed after 18 h of LPS stimulation but were unaffected by diet.Conclusions: We infer that enriching diets with arachidonic acid may be an effective means to enhance a stronger innate immunologic response to respiratory challenges in neonatal pigs. However, further work is needed to examine long-term safety, clinical efficacy and economic viability.
        Background: Respiratory infections challenge the swine industry, despite common medicinal practices. The dual signaling nature of PGE_2(supporting both inflammation and resolution) makes it a potent regulator of immune cell function. Therefore, the use of dietary long chain n-6 PUFA to enhance PGE_2 effects merits investigation.Methods: Day-old pigs(n = 60) were allotted to one of three dietary groups for 21 d(n = 20/diet), and received either a control diet(CON, arachidonate = 0.5% of total fatty acids), an arachidonate(ARA)-enriched diet(LC n-6,ARA = 2.2%), or an eicosapentaenoic(EPA)-enriched diet(LC n-3, EPA = 3.0%). Alveolar macrophages and lung parenchymal tissue were collected for fatty acid analysis. Isolated alveolar macrophages were stimulated with LPS in situ for 24 h, and m RNA was isolated to assess markers associated with inflammation and eicosanoid production.Culture media were collected to assess PGE_2 secretion. Oxidative burst in macrophages was measured by: 1)oxygen consumption and extracellular acidification(via Seahorse), 2) cytoplasmic oxidation and 3) nitric oxide production following 4, 18, and 24 h of LPS stimulation.Results: Concentration of ARA(% of fatty acids, w/w) in macrophages from pigs fed LC n-6 was 86% higher than CON and 18% lower in pigs fed LC n-3(P < 0.01). Following LPS stimulation, abundance of COX-2 and TNF-α mRNA(P < 0.0001), and PGE_2 secretion(P < 0. 01) were higher in LC n-6 PAM vs. CON. However, ALOX5 abundance was1.6-fold lower than CON. Macrophages from CON and LC n-6 groups were 4-fold higher in ALOX12/15 abundance(P < 0.0001) compared to LC n-3. Oxygen consumption and extracellular acidification rates increased over 4 h following LPS stimulation(P < 0.05) regardless of treatment. Similarly, increases in cytoplasmic oxidation(P < 0.001)and nitric oxide production(P < 0.002) were observed after 18 h of LPS stimulation but were unaffected by diet.Conclusions: We infer that enriching diets with arachidonic acid may be an effective means to enhance a stronger innate immunologic response to respiratory challenges in neonatal pigs. However, further work is needed to examine long-term safety, clinical efficacy and economic viability.
引文
1.Brockmeier S,Halbur P,Thacker E.Porcine respiratory disease complex.In:Brogden KA,Guthmiller JM,editors.Polymicrobial diseases.Washington DC:ASM Press;2002.Chapter 13.
    2.Chang C,Chang L,Chang Y,Chen M,Chiang T.Antimicrobial susceptibility of Actinobacillus Pleuropneumoniae,Escherichia Coli,and Salmonella Choleraesuis recovered from Taiwanese swine.J Vet Diagn Investig.2002;14:153-7.
    3.Haesebrouck F,Pasmans F,Chiers K,Maes D,Ducatelle R,Decostere A.Efficacy of vaccines against bacterial diseases in swine:what can we expect?Vet Microbiol.2004;100:255-68.
    4.Kelly D,Coutts AGP.Early nutrition and the development of immune function in the neonate.Proc Nutr Soc.2000;59(2):177-85.
    5.Calder PC.The relationship between the fatty acid composition of immune cells and their function.Prostag,Leukotr Ess.2008;79:101-8.
    6.Martins de Lima T,Gorj?o R,Hatanaka E,Cury-Boaventura M,Portioli Silva E,Procopio J,et al.Mechanisms by which fatty acids regulate leucocyte function.J Clin Sci.2007;113:65-77.
    7.Oliveros LB,Videla AM,Gimenez MS.Effect of dietary fat saturation on lipid metabolism,arachidonic acid turnover and peritoneal macrophage oxidative stress in mice.Braz J Med Biol Res.2004;37:311-20.
    8.Bagga D,Wang L,Farias-Eisner R,Glaspy JA,Reddy ST.Differential effects of prostaglandin derived fromω-6 andω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion.Proc Natl Acad Sci.2003;100:1751-6.
    9.Babcock TA,Novak T,Ong E,Jho DH,Helton WS,Espat NJ.Modulation of lipopolysaccharide-stimulated macrophage tumor necrosis factor-αproduction byω-3 fatty acid is associated with differential Cyclooxygenase-2 protein expression and is independent of Interleukin-10.J Surg Res.2002;107(1):135-9.https://doi.org/10.1006/jsre.2002.6498.
    10.Lee TH,Hoover RL,Williams JD,Sperling RI,Ravalese J,Spur BW,et al.Effect of dietary enrichment with Eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function.N Engl J Med.1985;312:1217-24.
    11.Botham KM,Mayes PA.Biosynthesis of Fatty Acids&Eicosanoids.In:Murray RK,Rodwell VW,Bender D,editors.Harper's illustrated biochemistry.New York:McGraw-Hill Professional Publishing;2009.p.193-204.
    12.Serhan CN,Chiang N,Van Dyke TE.Resolving inflammation:dual antiinflammatory and pro-resolution lipid mediators.Nat Rev Immunol.2008;8:349-61.
    13.Calder PC.Polyunsaturated fatty acids and inflammation.Prostag,Leukotr Ess.2006;75:197-202.
    14.Kawahara K,Hohjoh H,Inazumi T,Tsuchiya S,Sugimoto Y.Prostaglandin E2-induced inflammation:relevance of prostaglandin E receptors.Biochim Biophys Acta.1851;2015:414-21.
    15.Tang T,Scambler TE,Smallie T,Cunliffe HE,Ross EA,Rosner DR,et al.Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2,dual specificity phosphatase 1 and tristetraprolin.Sci Rep.2017.https://doi.org/10.1038/s41598-017-04100-1.
    16.Brezinski ME,Serhan CN.Selective incorporation of(15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils:agonist-induced deacylation and transformation of stored hydroxyeicosanoids.Proc Natl Acad Sci.1990;87:6248-52.
    17.Norris PC,Gosselin D,Reichart D,Glass CK,Dennis EA.Phospholipase A2regulates eicosanoid class switching during inflammasome activation.Proc Natl Acad Sci.2014;111:12746-51.
    18.Levy BD,Serhan CN.Resolution of acute inflammation in the lung.Annu Rev Physiol.2014;76:467-92.
    19.Serhan CN,Sheppard KA.Lipoxin formation during human neutrophilplatelet interactions.Evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro.J Clin Invest.1990;85:772-80.
    20.Serhan CN.Resolution phase of inflammation:novel endogenous antiinflammatory and Proresolving lipid mediators and pathways.Annu Rev Immunol.2007;25:101-37.
    21.Buckley C,Gilroy D,Serhan C.Proresolving lipid mediators and mechanisms in the resolution of acute inflammation.Immunity.2014;40:315-27.
    22.Calder PC,Bond JA,Harvey DJ,Gordon S,Newsholme EA.Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis.Biochem J.1990;269:807-14.
    23.Luostarinen R,Saldeen T.Dietary fish oil decreases superoxide generation by human neutrophils:relation to cyclooxygenase pathway and lysosomal enzyme release.Prostag,Leukotr Ess.1996;55:167-72.
    24.Babcock TA,Kurland A,Helton WS,Rahman A,Anwar KN,Espat NJ.Inhibition of activator protein-1 transcription factor activation by omega-3fatty acid modulation of mitogen-activated protein kinase signaling kinases.J Parenter Enter Nutr.2003;27:176-81.
    25.Fritsche KL,Alexander DW,Cassity NA,Huang S.Maternally-supplied fish oil alters piglet immune cell fatty acid profile and eicosanoid production.Lipids.1993;28:677-82.
    26.Renier G,Skamene E,DeSanctis J,Radzioch D.Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice.Modulation of macrophage secretory activities.Arterioscler Thomb.1993;13:1515-24.
    27.Novak TE,Babcock TA,Jho DH,Helton WS,Espat NJ.NF-κB inhibition byω-3 fatty acids modulates LPS-stimulated macrophage TNF-αtranscription.Am J Physiol Lung Cell Mol Physiol.2003;284:L84-9.
    28.Fritsche KL,Shahbazian LM,Feng C,Berg JN.Dietary fish oil reduces survival and impairs bacterial clearance in C3H/hen mice challenged with listeria monocytogenes.Clin Sci.1997;92:95-101.
    29.Puertollano MA,Puertollano E,Ruiz-Bravo A,Jimenez-Valera M,De Pablo MA,De Cienfuegos GA.Changes in the immune functions and susceptibility to listeria monocytogenes infection in mice fed dietary lipids.Immunol Cell Biol.2004;82:370-6.
    30.McFarland CT,Fan YY,Chapkin RS,Weeks BR,McMurray DN.Dietary polyunsaturated fatty acids modulate resistance to Mycobacterium tuberculosis in Guinea pigs.J Nutr.2008;138:2123-8.
    31.Huang M,Craig-Schmidt MC.Arachidonate and docosahexaenoate added to infant formula influence fatty acid composition and subsequent eicosanoid production in neonatal pigs.J Nutr.1996;126:2199-208.
    32.Hussein N,Ah-Sing E,Wilkinson P,Leach C,Griffin BA,Millward DJ.Longchain conversion of[13C]linoleic acid and a-linolenic acid in response to marked changes in their dietary intake in men.J Lipid Res.2005;46:269-80.
    33.Brenna JT,Salem N Jr,Sinclair AJ,Cunnane SC.Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans.Prostag.Leukotr Ess.2009;80:85-91.
    34.Huang CW,Chien YS,Chen YJ,Ajuwon KM,Mersmann HM,Ding ST.Role of n-3 polyunsaturated fatty acids in ameliorating the obesity-induced metabolic syndrome in animal models and humans.Int J Mol Sci.2016.https://doi.org/10.3390/ijms17101689.
    35.Hadley KB,Ryan AS,Forsyth S,Gautier S,Salem N Jr.The essentiality of arachidonic acid in infant development.Nutrients.2016;8:216.
    36.Hess HA,Corl BA,Lin X,Jacobi SK,Harrell RJ,Blikslager AT,et al.Enrichment of intestinal mucosal phospholipids with arachidonic and eicosapentaenoic acids fed to suckling piglets is dose and time dependent.J Nutr.2008;138:2164-71.
    37.Jacobi SK,Moeser AJ,Corl BA,Harrell RJ,Blikslager AT,Odle J.Dietary longchain PUFA enhance acute repair of ischemia-injured intestine of suckling pigs.J Nutr.2012;142:1266-71.
    38.Odle J,Lin X,Jacobi SK,Kim SW,Stahl CH.The suckling piglet as an Agrimedical model for the study of pediatric nutrition and metabolism.Annu Rev Anim Biosci.2014;2:419-44.
    39.Ganter M,Hensel A.Cellular variables in bronchoalveolar lavage fluids(BALF)in selected healthy pigs.Res Vet Sci.1997;63:215-7.
    40.Harmsen AG,Birmingham JR,Engen RL,Jeska EL.A method for obtaining swine alveolar macrophages by segmental pulmonary lavage.J Immunol Methods.1979;27:199-202.
    41.Wang Y,Sunwoo H,Cherian G,Sim JS.Fatty acid determination in chicken egg yolk:a comparison of different methods.Poult Sci.2000;79:1168-71.
    42.Lin X,Bo J,Oliver SAM,Corl BA,Jacobi SK,Oliver WT,et al.Dietary conjugated linoleic acid alters long chain polyunsaturated fatty acid metabolism in brain and liver of neonatal pigs.J Nutr Biochem.2011;22:1047-54.
    43.Ramachandran H,Laux J,Moldovan I,Caspell R,Lehmann PV,Subbramanian RA.Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies.Cell.2012;1:313-24.
    44.Jacobi SK,Lin X,Corl BA,Hess HA,Harrell RJ,Odle J.Dietary arachidonate differentially alters desaturase-elongase pathway flux and gene expression in liver and intestine of suckling pigs.J Nutr.2011;141:548-53.
    45.Esposito D,Chen A,Grace MH,Komarnytsky S,Lila MA.Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro.J Agric Food Chem.2014;62:7022-8.
    46.Cinar MU,Islam MA,Uddin MJ,Tholen E,Tesfaye D,Looft C,et al.Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA.BMC Res Notes.2012.https://doi.org/10.1186/1756-0500-5-107.
    47.Grace MH,Esposito D,Timmers MA,Xiong J,Yousef G,Komarnytsky S,et al.In vitro lipolytic,antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents.Food Funct.2016;7:4285-98.
    48.Bae J,Ricciardi CJ,Esposito D,Komarnytsky S,Hu P,Curry BJ,et al.Activation of pattern recognition receptors in brown adipocytes induces inflammation and suppresses uncoupling protein 1 expression and mitochondrial respiration.Am J Physiol Cell Physiol.2014;306:C918-30.
    49.Meade CJ,Mertin J.Fatty acids and immunity.J Adv Lipid Res.1978;16:127-65.
    50.Raphael W,Sordillo LM.Dietary polyunsaturated fatty acids and inflammation:the role of phospholipid biosynthesis.Int J Mol Sci.2013;14:21167-88.
    51.Hwang D.Essential fatty acids and immune response.FASEB J.1989;3:2052-61.
    52.Leslie CC.Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2.Prostag,Leukotr Ess.2004;70:373-6.
    53.Fritsche K.Fatty acids as modulators of the immune response.Annu Rev Nutr.2006;26:45-73.
    54.Kelley DS.Modulation of human immune and inflammatory responses by dietary fatty acids.Nutr.2001;17:669-73.
    55.Calder PC.Long-chain fatty acids and inflammation.Proc Nutr Soc.2012;71:284-9.
    56.Rocha DM,Bressan J,Hermsdorff HH.The role of dietary fatty acid intake in inflammatory gene expression:a critical review.Sao Paulo Med J.2017;135:157-68.
    57.Miles EA,Calder PC.Modulation of immune function by dietary fatty acids.Proc Nutr Soc.1998;57:277-92.
    58.Nieto N,Torres MI,Rios A,Gil A.Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis.J Nutr.2002;132:11-9.
    59.Sijben JW,Calder PC.Differential immunomodulation with long-chain n-3PUFA in health and chronic disease.Proc Nutr Soc.2007;66:237-59.
    60.Galarraga B,Ho M,Youssef HM,Hill A,McMahon H,Hall C,et al.Cod liver oil(n-3 fatty acids)as a non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis.Rheumatol.2008;47:665-9.
    61.Njoroge SW,Laposata M,Katrangi W,Seegmiller AC.DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity.J Lipid Res.2012;53:257-65.
    62.Schwerbrock NM,Karlsson EA,Shi Q,Sheridan PA,Beck MA.Fish oil-fed mice have impaired resistance to influenza infection.J Nutr.2009;139:1588-94.
    63.Anderson M,Fritsche KL.(n-3)fatty acids and infectious disease resistance.J Nutr.2002;132:3566-76.
    64.Calder PC.Omega-3 fatty acids and inflammatory processes.Nutrients.2010;2:355-74.
    65.Anes E,Kuhnel MP,Bos E,Moniz-Pereira J,Habermann A,Griffiths G.Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria.Nat Cell Biol.2003;5:793-802.
    66.McMurray DN,Bonilla DL,Chapkin RS.N-3 fatty acids uniquely affect antimicrobial resistance and immune cell plasma membrane organization.Chem Phys Lipids.2011;164:626-35.
    67.M?ller S,Lauridsen C.Dietary fatty acid composition rather than vitamin Esupplementation influence ex vivo cytokine and eicosanoid response of porcine alveolar macrophages.Cytokine.2006;35:6-12.
    68.Fritsche KL,Cassity NA.Metabolism of[3H]arachidonic acid by n-3polyunsaturated fatty acid-enriched piglet alveolar macrophages.Prostag,Leukotr Ess.1996;55:315-23.
    69.Lauridsen C,Stagsted J,Jensen SK.N-6 and n-3 fatty acids ratio and vitamin E in porcine maternal diet influence the antioxidant status and immune cell eicosanoid response in the progeny.Prostag Other Lipid Mediat.2007;84:66-78.
    70.Chapkin RS,Akoh CC,Miller CC.Influence of dietary n-3 fatty acids on macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis.J Lipid Res.1991;32:1205-13.
    71.Sobolewski C,Cerella C,Dicato M,Ghibelli L,Diederich M.The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies.Int J Cell Biol.2010.https://doi.org/10.1155/2010/215158.
    72.Matsui M,Chu Y,Zhang H,Gagnon KT,Shaikh S,Kuchimanchi S,et al.Promoter RNA links transcriptional regulation of inflammatory pathway genes.Nucleic Acids Res.2013;41:10086-109.
    73.Gijon MA,Zarini S,Murphy RC.Biosynthesis of eicosanoids and transcellular metabolism of leukotrienes in murine bone marrow cells.J Lipid Res.2007;48:716-25.
    74.Luo M,Jones SM,Peters-Golden M,Brock TG.Nuclear localization of5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity.Proc Natl Acad Sci.2003;100:12165-70.
    75.Calder PC.Omega-3 polyunsaturated fatty acids and inflammatory processes:nutrition or pharmacology?Br J Clin Pharmacol.2013;75:645-62.
    76.Verlengia R,Gorjao R,Kanunfre CC,Bordin S,de Lima TM,Martins EF,et al.Effects of EPA and DHA on proliferation,cytokine production,and gene expression in Raji cells.Lipids.2004;39:857-64.
    77.Schindler R,Mancilla J,Endres S,Ghorbani R,Clark SC,Dinarello CA.Correlations and interactions in the production of interleukin-6(IL-6),IL-1,and tumor necrosis factor(TNF)in human blood mononuclear cells:IL-6suppresses IL-1 and TNF.Blood.1990;75:40-7.
    78.Kohanawa Y,Kohanawa M.A regulatory effect of the balance between TNF-αand IL-6 in the granulomatous and inflammatory response to Rhodococcus aurantiacus infection in mice.J Immunol.2006;177:642-50.
    79.Sreeramkumar V,Fresno M,Cuesta N.Prostaglandin E2 and T cells:friends or foes?Immunol Cell Biol.2012;90:579-86.
    80.Kalinski P.Regulation of immune responses by prostaglandin E2.J Immunol.2012;188:21-8.
    81.Levy BD,Clish CB,Schmidt B,Gronert K,Serhan CN.Lipid mediator class switching during acute inflammation:signals in resolution.Nat Immunol.2001;2:612-9.
    82.Babu US,Bunning VK,Wiesenfeld P,Raybourne RB,O'Donnell M.Effect of dietary flaxseed on fatty acid composition,superoxide,nitric oxide generation and antilisterial activity of peritoneal macrophages from female Sprague-Dawley rats.Life Sci.1997;60:545-54.
    83.Chaet MS,Garcia VF,Arya G,Ziegler MM.Dietary fish oil enhances macrophage production of nitric oxide.J Surg Res.1994;57:65-8.
    84.Bonatto SJR,Folador A,Aikawa J,Yamazaki RK,Pizatto N,Oliveira HHP,et al.Lifelong exposure to dietary fish oil alters macrophage responses in Walker 256 tumor-bearing rats.Cell Immunol.2004;231:56-62.
    85.de Lima TM,de Sa LL,Scavone C,Curi R.Fatty acid control of nitric oxide production by macrophages.FEBS Lett.2006;580:3287-95.
    86.Ohata T,Fukuda K,Takahashi M,Sugimura T,Wakabayashi K.Suppression of nitric oxide production in lipopolysaccharide-stimulated macrophage cells byω3 polyunsaturated fatty acids.Jap J Cancer Res.1997;88:234-7.
    87.Healy DA,Watson RWG,Newsholme P.Polyunsaturated and monounsaturated fatty acids increase neutral lipid accumulation,caspase activation and apoptosis in a neutrophil-like,differentiated HL-60 cell line.Clin Sci.2003;104:171-9.
    88.Rossi R,Pastorelli G,Cannata S,Corino C.Recent advances in the use of fatty acids as supplements in pig diets:a review.Anim Feed Sci Tech.2010;162:1-11.
    89.Tanghe S,De Smet S.Does sow reproduction and piglet performance benefit from the addition of n-3 polyunsaturated fatty acids to the maternal diet?Vet J.2013;197:560-9.
    90.Lopez-Ubeda R,Garcia-Vazquez FA,Romar R,Gadea J,Munoz M,Hunter RH,et al.Oviductal transcriptome is modified after insemination during spontaneous ovulation.in the sow.PLoS One.2015.
    91.Suradhat S,Thanawongnuwech R.Upregulation of interleukin-10 gene expression in the leukocytes of pigs infected with porcine reproductive and respiratory syndrome virus.J Gen Virol.2003;84:2755-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700