用户名: 密码: 验证码:
Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique
  • 作者:GUANGWEI ; CHEN ; WENLEI ; LI ; GUOMEI ; WANG ; WENFU ; ZHANG ; CHAO ; ZENG ; WEI ; ZHAO
  • 英文作者:GUANGWEI CHEN;WENLEI LI;GUOMEI WANG;WENFU ZHANG;CHAO ZENG;WEI ZHAO;State Key Laboratory of Transient Optics and Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences;University of Chinese Academy of Sciences (UCAS);
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:State Key Laboratory of Transient Optics and Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences;University of Chinese Academy of Sciences (UCAS);
  • 出版日期:2019-02-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(61475188,61635013,61805277);; Chinese Academy of Sciences(CAS)Strategic Priority Research Program and Light of West China Program(XDB24030600,XAB2017A09)
  • 语种:英文;
  • 页:GZXJ201902013
  • 页数:6
  • CN:02
  • ISSN:31-2126/O4
  • 分类号:90-95
摘要
We demonstrate a passively mode-locked all-fiber laser incorporating a piece of graded-index multimode fiber as a mode-locking modulator based on a nonlinear multimodal interference technique, which generates two types of coexisting high-energy ultrashort pulses [i.e., the conventional soliton(CS) and the stretched pulse(SP)]. The CS with pulse energy as high as 0.38 n J is obtained at the pump level of 130 mW. When the pump increases to175 mW, the high-energy SP occurs at a suitable nonlinear phase bias and its pulse energy can reach 4 n J at a 610 mW pump. The pulse durations of the generated CS and SP are 2.3 ps and 387 fs, respectively. The theory of nonlinear fiber optics, single-shot spectral measurement by the dispersive Fourier-transform technique, and simulation methods based on the Ginzburg–Landau equation are provided to characterize the laser physics and reveal the underlying principles of the generated CS and SP. A rogue wave, observed between the CS and SP regions, mirrors the laser physics behind the dynamics of generating a high-energy SP from a CS. The proposed all-fiber laser is versatile, cost-effective and easy to integrate, which provides a promising solution for high-energy pulse generation.
        We demonstrate a passively mode-locked all-fiber laser incorporating a piece of graded-index multimode fiber as a mode-locking modulator based on a nonlinear multimodal interference technique, which generates two types of coexisting high-energy ultrashort pulses [i.e., the conventional soliton(CS) and the stretched pulse(SP)]. The CS with pulse energy as high as 0.38 n J is obtained at the pump level of 130 mW. When the pump increases to175 mW, the high-energy SP occurs at a suitable nonlinear phase bias and its pulse energy can reach 4 n J at a 610 mW pump. The pulse durations of the generated CS and SP are 2.3 ps and 387 fs, respectively. The theory of nonlinear fiber optics, single-shot spectral measurement by the dispersive Fourier-transform technique, and simulation methods based on the Ginzburg–Landau equation are provided to characterize the laser physics and reveal the underlying principles of the generated CS and SP. A rogue wave, observed between the CS and SP regions, mirrors the laser physics behind the dynamics of generating a high-energy SP from a CS. The proposed all-fiber laser is versatile, cost-effective and easy to integrate, which provides a promising solution for high-energy pulse generation.
引文
1.W.H.Renninger and F.W.Wise,“Optical solitons in graded-index multimode fibers,”Nat.Commun.4,1719(2013).
    2.P.M.W.French,“The generation of ultrashort laser pulses,”Rep.Prog.Phys.58,169-262(1995).
    3.H.Zhang,Q.Bao,D.Tang,and L.Zhao,“Large energy soliton erbiumdoped fiber laser with a graphene-polymer composite mode locker,”Appl.Phys.Lett.95,141103(2009).
    4.F.W.Wise,A.Chong,and W.H.Renninger,“High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,”Laser Photon.Rev.2,58-73(2008).
    5.L.Yun,“Generation of vector dissipative and conventional solitons in large normal dispersion regime,”Opt.Express 25,18751-18759(2017).
    6.X.Wu,D.Y.Tang,L.M.Zhao,and H.Zhang,“Effective cavity dispersion shift induced by nonlinearity in a fiber laser,”Phys.Rev.A 80,013804(2009).
    7.S.Wang,A.Docherty,B.S.Marks,and C.R.Menyuk,“Boundary tracking algorithms for determining the stability of mode-locked pulses,”J.Opt.Soc.Am.B 31,2914-2930(2014).
    8.D.Mao,X.Cui,X.Gan,M.Li,W.Zhang,H.Lu,and J.Zhao,“Passively Q-switched and mode-locked fiber laser based on a Re S2saturable absorber,”IEEE J.Sel.Top.Quantum Electron.24,1100406(2018).
    9.L.F.Mollenauer,R.H.Stolen,and J.P.Gordon,“Experimental observation of picosecond pulse narrowing and solitons in optical fibers,”Phys.Rev.Lett.45,1095-1098(1980).
    10.G.Wang,G.Chen,W.Li,C.Zeng,and H.Yang,“Decaying evolution dynamics of double-pulse mode-locking,”Photon.Res.6,825-829(2018).
    11.D.Y.Tang,L.M.Zhao,X.Wu,and H.Zhang,“Soliton modulation instability in fiber lasers,”Phys.Rev.A 80,023806(2009).
    12.S.Hu,J.Yao,M.Liu,A.P.Luo,Z.C.Luo,and W.C.Xu,“Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy,”Opt.Express 24,10786-10796(2016).
    13.L.M.Zhao,D.Y.Tang,X.Wu,H.Zhang,and H.Y.Tam,“Coexistence of polarization-locked and polarization-rotating vector solitons in a fiber laser with SESAM,”Opt.Lett.34,3059-3061(2009).
    14.M.Liu,A.P.Luo,Z.C.Luo,and W.C.Xu,“Dynamics trapping of a polarization rotation vector soliton in a fiber laser,”Opt.Lett.42,330-333(2017).
    15.M.Chernysheva,A.Rozhin,Y.Fedotov,C.Mou,R.Arif,S.M.Kobtsev,E.M.Dianov,and S.K.Turitsyn,“Carbon nanotubes for ultrafast fiber lasers,”Nanophotonics 6,1-30(2017).
    16.L.Yun,“Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation,”Opt.Express 25,32380-32385(2017).
    17.J.Liu,Y.Chen,Y.Li,H.Zhang,S.Zheng,and S.Xu,“Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,”Photon.Res.6,198-203(2018).
    18.D.Mao,B.Du,D.Yang,S.Zhang,Y.Wang,W.Zhang,X.She,H.Cheng,H.Zeng,and J.Zhao,“Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,”Small 12,1489-1497(2016).
    19.Y.Ge,Z.Zhu,Y.Xu,Y.Chen,S.Chen,Z.Liang,Y.Song,Y.Zou,H.Zeng,S.Xu,H.Zhang,and D.Fan,“Broadband nonlinear photoresponse of 2D TiS2for ultrashort pulse generation and all-optical thresholding devices,”Adv.Opt.Mater.6,1701166(2018).
    20.E.Nazemosadat and A.Mafi,“Nonlinear multimodal inference and saturable absorber using a short graded-index multimode optical fiber,”J.Opt.Soc.Am.B 30,1357-1367(2013).
    21.H.Li,Z.Wang,C.Li,J.Zhang,and S.Xu,“Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber,”Opt.Express 25,26546-26553(2017).
    22.F.Poletti and P.Horak,“Description of ultrashort pulse propagation in multimode optical fibers,”J.Opt.Soc.Am.B 25,1645-1654(2008).
    23.A.S.Ahsan and G.P.Agrawal,“Graded-index solitons in multimode fibers,”Opt.Lett.43,3345-3348(2018).
    24.Z.Wang,D.N.Wang,F.Wang,L.Li,C.Zhao,B.Xu,S.Jin,S.Cao,and Z.Fang,“Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,”Opt.Lett.43,2078-2081(2018).
    25.U.Te?in and B.Orta?,“All-fiber all-normal dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,”Opt.Lett.43,1611-1614(2018).
    26.Y.Shen,J.Zweck,S.Wang,and C.R.Menyuk,“Spectra of short pulse solutions of the cubic-quintic complex Ginzburg Landau equation near zero dispersion,”Stud.Appl.Math.137,238-255(2016).
    27.C.Bao,W.Chang,C.Yang,N.Akhmediev,and S.T.Cundiff,“Observation of coexisting dissipative solitons in a mode-locked fiber lasers,”Phys.Rev.Lett.115,253903(2015).
    28.A.Mafi,P.Hofmann,C.J.Salvin,and A.Schülzgen,“Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,”Opt.Lett.36,3596-3598(2011).
    29.B.Oktem,C.ülgüdür,and F.?.IIday,“Soliton-similariton fiber laser,”Nat.Photonics 4,307-311(2010).
    30.A.Chong,W.H.Renninger,and F.W.Wise,“Properties of normaldispersion femtosecond fiber laser,”J.Opt.Soc.Am.B 25,140-148(2008).
    31.L.W.Liou and G.P.Agrawal,“Effect of frequency chirp on soliton spectral sidebands in fiber lasers,”Opt.Lett.20,1286-1288(1995).
    32.A.Mafi,“Pulse propagation in a short nonlinear graded-index multimode optical fiber,”J.Lightwave Technol.30,2803-2811(2012).
    33.M.B.Shemirani,W.Mao,R.A.Panicker,and J.M.Kahn,“Principal modes in graded-index multimode fiber in presence of spatial-and polarization-mode coupling,”J.Lightwave Technol.27,1248-1261(2009).
    34.K.?zg?ren and F.?.IIday,“All-fiber all-normal dispersion laser with a fiber-based Lyot filter,”Opt.Lett.35,1296-1298(2010).
    35.G.Herink,B.Jalali,C.Ropers,and D.R.Solli,“Resolving the buildup of femtosecond mode-locking with single-shot spectroscopy at90 MHz frame rate,”Nat.Photonics 10,321-326(2016).
    36.M.Onorato,S.Residori,U.Bortolozzo,A.Montina,and F.T.Arecchi,“Rogue waves and their generating mechanisms in different physical contexts,”Phys.Rep.528,47-89(2013).
    37.D.R.Solli,C.Ropers,P.Koonath,and B.Jalali,“Optical rogue waves,”Nature 450,1054-1057(2007).
    38.D.D.Han,“Experimental and theoretical investigations of a tunable dissipative soliton fiber laser,”Appl.Opt.53,7629-7633(2014).
    39.F.Zhao,Y.Wang,H.Wang,Z.Yan,X.Hu,W.Zhang,T.Zhang,and K.Zhou,“Ultrafast soliton and stretched-pulse switchable modelocked fiber laser with hybrid structure of multimode fiber-based saturable absorber,”Sci.Rep.8,16369(2018).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700