用户名: 密码: 验证码:
城市河流中碳源对同步硝化反硝化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:INFLUENCE OF CARBON SOURCE ON SIMULTANEOUS NITRIFICATION AND DENITRIFICATION (SND) IN URBAN RIVERS
  • 作者:刘晓斐 ; 杜伊 ; 胡玮璇 ; 王晓燕
  • 英文作者:LIU Xiao-fei;DU Yi;HU Wei-xuan;WANG Xiao-yan;College of Resources, Environment and Tourism, Capital Normal University;Research Center of Aquatic Environment in the Capital Region, Capital Normal University;
  • 关键词:有机碳源 ; C/N ; 溶解性有机质(DOM) ; 同步硝化反硝化(SND) ; 生物脱氮
  • 英文关键词:organic carbon source;;C/N;;dissolved organic matter(DOM);;simultaneous nitrification and denitrification(SND);;biological denitrification
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:首都师范大学资源环境与旅游学院;首都师范大学首都圈水环境研究中心;
  • 出版日期:2018-09-27 11:21
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.248
  • 基金:北京市自然科学基金委员会-北京市教育委员会联合资助项目(KZ201810028047);; 科技创新服务能力建设-基本科研业务费(科研类)(025185305000/149)
  • 语种:中文;
  • 页:HJGC201902018
  • 页数:6
  • CN:02
  • ISSN:11-2097/X
  • 分类号:76-81
摘要
为了解城市污染河流水体有机碳源(COD)及溶解性有机质(DOM)在低氧(ρ(DO)=0.5~0.6 mg/L)条件下对同步硝化反硝化(SND)系统脱氮效率的影响,利用BM-Advance呼吸仪作为反应容器来模拟北运河的水体环境,并通过向水样中投加易生物降解有机碳源(乙醇)、慢速可生物降解有机碳源(淀粉)和北运河水体DOM(腐殖酸和色氨酸)的方式来研究外加碳源和水体DOM(腐殖酸和色氨酸)对水体氮去除及转化的影响。结果表明:外加乙醇时,总氮去除率从49%(C/N为6.5)上升至72%(C/N为16);外加淀粉时,反应时间内总氮去除率从25%(C/N为6.5)上升至59%(C/N为16):在模拟北运河水环境条件下,投加腐殖酸的反应器中总氮去除率为47.75%,腐殖酸可以作为很好的碳源促进SND过程,然而色氨酸则会加剧水体总氮的积累。由此可知,提高C/N可以加速同步硝化反硝化(SND)进程。
        In order to understand the influence of the organic carbon source(COD) and the dissolved organic matter(DOM) on the denitrification efficiency of simultaneous nitrification and denitrification(SND) system under the condition of low oxygen(ρ(DO)=0.5~0.6 mg/L) in urban rivers, in this research, BM-Advance breathing apparatus was used as a reactor to simulate the water environment of Beiyun River, and additionally, three different carbon sources including the readily biodegradable organic carbon source(i.e., ethanol), slowly biodegradable organic carbon source(i.e., starch) and DOM(i.e., humic acid and tryptophan) were added separately into water samples to investigate the influences of additional carbon sources and DOM(i.e., humic acid and tryptophan) on the removal and transformation of nitrogen in rivers. The research results showed that total nitrogen removal rate increased from 49%(C/N was 6.5) to 72%(C/N was 16) in the reactor amended with ethanol, and increased from 25%(C/N was 6.5) to 59%(C/N was 16) in the reactor amended with starch. Under simulating water environment condition of Beiyun River, the rate of total nitrogen removal was 47.75% in the reactor amended with humic acid, and humic acid can be used as a good carbon source to promote the SND process; however, tryptophan may promote the accumulation of total nitrogen in water.It can be seen that increasing C/N could accelerate the SND process.
引文
[1] Yang Y, Huang S, Liang W, et al. Microbial removal of NOx at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter[J]. Journal of Hazardous Materials, 2012,203-204:326-332.
    [2] 戴娴, 王晓霞, 彭永臻, 等. 进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响[J]. 中国环境科学, 2015,35(9):2636-2643.
    [3] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification(SND)[J]. Water Sci Tech, 1999,36(6):61-68.
    [4] 胡宇华, 丁富新, 范轶, 等. 有机碳源对同时硝化/反硝化(SND)过程的影响[J]. 环境工程, 2001,19(4):17-20.
    [5] Zhang D, Zhang X, Wang Y, et al. Innovative slow-release organic carbon-source material for groundwater in situ denitrification[J]. Environmental Technology, 2015,36(7):909-919.
    [6] 张燕, 陈余道, 渠光华. 乙醇对地下水中硝酸盐去除作用的研究[J]. 环境科学与技术, 2008,31(12):72-76.
    [7] Xing X, Jun B, Yanagida M, et al. Effect of C/N values on microbial simultaneous removal of carbonaceous and nitrogenous substances in wastewater by single continuous-flow fluidized-bed bioreactor containing porous carrier particles[J]. Biochemical Engineering Journal, 2000,5:29-37.
    [8] 王曼曼, 汪家权, 褚华男. 固态碳源去除地下水硝酸盐的模拟实验[J]. 环境工程学报, 2013,7(2):501-506.
    [9] Wang l Y, Wu F C, Zhang R Y, et al. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau[J]. Journal of Environmental Sciences, 2009,21(5):581-588.
    [10] Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as anecosystem property[J]. Nature, 2011,478(7367):49-56.
    [11] 陈永娟, 胡玮璇, 庞树江, 等. 北运河水体中荧光溶解性有机物空间分布特征及来源分析[J]. 环境科学, 2016,37(8):3017-3025.
    [12] 宋海燕, 尹友谊, 宋建中. 不同来源腐殖酸的化学组成与结构研究[J]. 华南师范大学学报(自然科学版), 2009(1):61-66.
    [13] 荆红卫, 张志刚, 郭婧. 北京北运河水系水质污染特征及污染来源分析[J]. 中国环境科学, 2013,33(2):319-327.
    [14] 杜伊, 胡玮璇, 王晓燕, 等. 北京市北运河中化学需氧量组分含量及其可生化性研究[J]. 湿地科学, 2017,15(3):470-477.
    [15] 王永才, 陈卫, 郑晓英, 等. 生物接触氧化法的同步硝化反硝化影响因素研究[J]. 中国给水排水, 2011,27(7):22-25.
    [16] 周丹丹, 马放, 董双石, 等. 溶解氧和有机碳源对同步硝化反硝化的影响[J]. 环境工程学报, 2007,1(4):25-28.
    [17] 鲍林林, 王晓燕, 陈永娟, 等. 北运河沉积物中主要脱氮功能微生物的群落特征[J]. 中国环境科学, 2016,36(5):1520-1529.
    [18] 王燕飞. 水污染控制技术[M]. 2版. 北京: 化学工业出版社, 2008.
    [19] Gao D, Yuan X, Liang H. Reactivation performance of aerobic granules under different storage strategies[J]. Water Research, 2012,46(10):3315-3322.
    [20] 荣宏伟, 张朝升, 彭永臻, 等. DO对SBBR工艺同步硝化反硝化的影响研究[J]. 环境科学与技术, 2009,32(8):16-19.
    [21] 杜馨, 张可方, 方茜, 等. 碳源对SBR工艺同步硝化反硝化的影响[J]. 中国给水排水, 2007,23(11):47-51.
    [22] 刘瑾瑾, 袁悦, 李夕耀, 等. 腐殖酸预处理对活性污泥中硝化菌活性的影响[J]. 哈尔滨工业大学学报, 2017,49(8):15-19.
    [23] 李丽, 檀文炳, 王国安, 等. 腐殖质电子传递机制及其环境效应研究进展[J]. 环境化学, 2016,35(2):254-266.
    [24] Piepenbrock A, Schroder C, Kappler A. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals[J]. Environmental Science & Technology, 2014,48(3):1656-1664.
    [25] 王亚军, 马军. 水体环境中天然有机质腐殖酸研究进展[J]. 生态环境学报, 2012,21(6):1155-1165.
    [26] Aranda-Tamaura C, Estrada-Alvarado M I, Texier A C, et al. Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification[J]. Chemosphere, 2007,69(11):1722-1727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700