用户名: 密码: 验证码:
山东银莲花叶片形态结构对异质生境和海拔变化的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of leaf morphology and structure of Anemone shikokiana to heterogeneous habitats and altitude changes
  • 作者:于文英 ; 高燕 ; 逄玉娟 ; 王鸷 ; 卞福花
  • 英文作者:YU Wenying;GAO Yan;PANG Yujuan;WANG Zhi;BIAN Fuhua;School of Opto-electronic Information Science and Technology, Yantai University;Kunyushan Forest Farm;College of Life Sciences, Yantai University;
  • 关键词:山东银莲花 ; 海拔 ; 异质生境 ; 叶片 ; 响应机制
  • 英文关键词:Anemone shikokiana;;elevation;;heterogeneous habitat;;leaf;;response mechanism
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:烟台大学光电信息科学技术学院;烟台市昆嵛山林场;烟台大学生命科学学院;
  • 出版日期:2019-04-01 09:13
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:山东省自然科学基金项目(ZR2018MC003)
  • 语种:中文;
  • 页:STXB201912020
  • 页数:8
  • CN:12
  • ISSN:11-2031/Q
  • 分类号:205-212
摘要
山东银莲花为一分布极其狭域的稀有物种,对海拔600 m以上的针阔混交林和山顶灌丛两种异质的生境都具有较高的适应性。为探索其适应策略,选择两种异质生境中的5个海拔梯度样带,采用常规石蜡切片法和显微观察技术,对叶片进行观察、分析和测量,通过比较叶片外部形态特征参数和内部解剖结构的差异,推测其叶片适应海拔和异质生境的响应策略。结果表明:为适应阴暗、潮湿的针阔混交林和干旱、强光照的山顶灌丛两种不同环境,山东银莲花分别表现出不同的适应策略。针阔混交林下,叶片的背腹表皮毛密度、比叶面积和气孔相对开度较山顶灌丛的大,而气孔密度、叶片厚度、栅栏组织和海绵组织的厚度较山顶灌丛的小;山顶灌丛植株叶片栅栏组织细胞排列较林下更加整齐紧密。两种生境中叶片腹面表皮毛的长度、气孔相对开度都随海拔的升高而减小,且差异明显;而叶片厚度、比叶面积、气孔指数等对600 m以上海拔变化未表现出明显的规律性。本研究将为山东银莲花的保护和利用提供理论基础及依据,为其他植物的相关研究提供参考。
        Anemone shikokiana is a rare species adapted to two heterogeneous habitats including conifer and broad-leaf mixed forest and shrubs of mountaintop at higher than 600 m elevation. In the present study, we chose five sample transects to explore the response mechanism of this species to heterogeneous habitats and altitude gradients. Leaves, which are plant organs with the largest surface area exposed to the sun and air, are the main photosynthetic organs and sensitive organs to environmental changes. The morphology and anatomical structure of the leaves in A. shikokiana were analyzed by the paraffin section method and microscopic technique. We observed the morphological characteristics of the leaves and epidermal hairs, measured the thickness of the leaves and mesophyll tissue, calculated their anatomical indices and stomatal parameters, and analyzed the correlation between these characteristics and the heterogeneous habitats or altitude. Compared with those of leaves from mountaintop shrubs, the density of upper and lower epidermal hairs, specific leaf area, and relative opening of the stoma of leaves from the conifer and broad-leaf mixed forest were greater, whereas stoma density, leaf thickness and palisade and spongy tissue thickness were lower. The length of upper epidermal hairs and relative opening of the stoma gradually decreased with increasing altitude. However, there was no obvious regularity between the other parameters measured and different altitude, such as palisade and spongy tissue thickness, specific leaf area, and stomatal index. This study provides a theoretical foundation for the protection and utilization of A. shikokiana and provide references for related research in other plants.
引文
[1] Araus J L,Slafer G A,Reynolds M P,Royo C.Plant breeding and drought in C3 cereals:what should we breed for?Annals of Botany,2002,89(7):925- 940.
    [2] 臧德奎.山东珍稀濒危植物.北京:中国林业出版社,2017:186- 186.
    [3] 王鸷,逄玉娟,刘传林,庄树宏,卞福花.稀有植物山东银莲花(Anemone shikokiana (Makino) Makino)的核型分析及其生境对染色体变异的影响.植物学研究,2013,2(5):113- 116.
    [4] Bian F H,Pang Y J,Wang Z,Liu C L,Zhuang S H.Genetic diversity of the rare plant Anemone shikokiana (Makino) Makino (Ranunculaceae) inferred from AFLP markers.Plant Systematics and Evolution,2015,301(2):677- 684.
    [5] Bian F H,Pang Y J,Wang Z,Liu C L.Genetic diversity of Anemone shikokiana (Makino) Makino analyzed using the proteomics-based approach.Current Proteomics,2015,12(1):4- 13.
    [6] Taylor S H,Franks P J,Hulme S P,Spriggs E,Christin P A,Edwards E J,Woodward F I,Osborne C P.Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses.New phytologist,2012,193(2):387- 396.
    [7] Donovan L A,Maherali H,Caruso C M,Huber H,de Kroon H.The evolution of the worldwide leaf economics spectrum.Trends in Ecology & Evolution,2011,26(2):88- 95.
    [8] 盘远方,陈兴彬,姜勇,梁士楚,陆志任,黄宇欣,倪鸣源,覃彩丽,刘润红.桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应.生态学报,2018,38(5):1581- 1589.
    [9] Liu B B,Li M,Li Q M,Cui Q Q,Zhang W D,Ai X Z,Bi H G.Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings.Photosynthetica,2018,56(3):942- 952.
    [10] 李永华,罗天祥,卢琦,田晓娅,吴波,杨恒华.青海省沙珠玉治沙站17种主要植物叶性因子的比较.生态学报,2005,25(5):994- 999.
    [11] Gonzalez-Paleo L,Ravetta D A.Relationship between photosynthetic rate,water use and leaf structure in desert annual and perennial forbs differing in their growth.Photosynthetica,2018,56(4):1177- 1187.
    [12] Berryman C A,Eamus D,Duff G A.Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment.Journal of Experimental Botany,1994,45(5):539- 546.
    [13] Shimada T,Sugano S S,Hara-Nishimura I.Positive and negative peptide signals control stomatal density.Cellular and Molecular Life Sciences,2011,68(12):2081- 2088.
    [14] Ding H,Liu D,Liu X,Li Y,Kang J,Lv J,Wang G.Photosynthetic and stomatal traits of spike and flag leaf of winter wheat (Triticum aestivum L.) under water deficit.Photosynthetica,2018,56 (2):687- 697.
    [15] Mendes K R,Marenco R A.Stomatal opening in response to the simultaneous increase in vapor pressure deficit and temperature over a 24-h period under constant light in a tropical rainforest of the central Amazon.Theoretical and Experimental Plant Physiology,2017,29(4):187- 194.
    [16] 李周,赵雅洁,宋海燕,张静,陶建平,刘锦春.不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响.生态学报,2018,38(2):721- 732.
    [17] Fu Q S,Yang R C,Wang H S,Zhao B,Zhou C L,Ren S X,Guo Y D.Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress.Photosynthetica,2013,51(1):109- 114.
    [18] Xu Z Z,Zhou G S.Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.Journal of Experimental Botany,2008,59(12):3317- 3325.
    [19] Zhao W S,Sun Y L,Kjelgren R,Liu X P.Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit.Acta Physiologiae Plantarum,2015,37:1704.
    [20] Sam O,Jeréz E,Dell′Amico J,Ruiz-Sanchez M C.Water stress induced changes in anatomy of tomato leaf epidermes.Biologia Plantarum,2000,43(2):275- 277.
    [21] 杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响.植物生态学报,2001,25(3):312- 316.
    [22] K?rner C.The use of ‘altitude’ in ecological research.Trends in Ecology & Evolution,2007,22(11):569- 574.
    [23] Willis C G,Ruhfel B,Primack R B,Miller-Rushing A J,Davis C C.Phylogenetic patterns of species loss in Thoreau′s woods are driven by climate change.Proceedings of the National Academy of Science of the United States of America,2008,105(44):17029- 17033.
    [24] Gedan K B,Bertness M D.Experimental warming causes rapid loss of plant diversity in New England salt marshes.Ecology Letters,2009,12(8):842- 848.
    [25] Romero-Munar A,Baraza E,Cifre J,Achir C,Gulías J.Leaf plasticity and stomatal regulation determines the ability of Arundo donax plantlets to cope with water stress.Photosynthetica,2018,56(2):698- 706.
    [26] 王瑞丽,于贵瑞,何念鹏,王秋凤,赵宁,徐志伟.气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例.生态学报,2016,36(8):2175- 2184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700