用户名: 密码: 验证码:
黄河下游与黄河三角洲现代非地震变形层理的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modern Non-Seismically Induced Deformation Bedding in the Lower Reaches of the Yellow River and Yellow River Delta
  • 作者:钟建华 ; 宋冠先 ; 倪良田 ; 孙宁亮 ; 郝兵 ; 葛毓柱 ; 薛纯琦 ; 孙景耀 ; 刘闯 ; 曹梦春
  • 英文作者:ZHONG JianHua;SONG GuanXian;NI LiangTian;SUN NingLiang;HAO Bing;GE Yu Zhu;XUE ChunQi;SUN JingYao;LIU Chuang;CAO MengChun;School of Geosciences,China University of Petroleum(East China);Laboratory of Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology;China National Offshore Oil Bohai Company;
  • 关键词:变形层理 ; 包卷层理 ; 成因 ; 非地震 ; 黄河
  • 英文关键词:deformation bedding;;convolute bedding;;genesis;;non-seismic;;Yellow River
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:中国石油大学(华东)地球科学与技术学院;海洋国家实验室海洋矿产资源评价与探测技术功能实验室;中国海洋石油总公司渤海分公司;
  • 出版日期:2018-12-05 08:56
  • 出版单位:沉积学报
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金项目(49972037,41172093,41572088);; 教育部博士点基金(20060425509,20050425515,20030425008,2001425004);; 山东省自然科学基金(Q9901)~~
  • 语种:中文;
  • 页:CJXB201902002
  • 页数:15
  • CN:02
  • ISSN:62-1038/P
  • 分类号:18-32
摘要
变形层理是软沉积变形构造(SSDS)研究中的重要内容,而SSDS的研究又是沉积学、工程地质、地震学及构造地质学等近期的研究热点。但是,目前人们对地震SSDS和非地震SSDS的精确辨识还存在一定的困难,所以建立起地震与非地震SSDS的辨识标准是非常重要的,变形层理又是SSDS研究中的重中之重,因此,对变形层理的研究具有重要意义。研究表明,黄河下游现代沉积中发育了大量的变形层理,确凿的证据证明这些变形层理与地震毫无关系,因此详细地研究这些变形层理对于建立识别地震SSDS和非地震SSDS标准具有较重要意义。黄河下游(包括黄河三角洲分流河道)发育的变形层理类型及成因多样,既有典型的包卷层理,也有极不规则的一般变形层理;从成因上,既有密度或重力倒置形成的、也有波浪作用引起的滑动滑塌形成的、还有水牵引和滑动沉积物牵引形成的、甚至还有冰块拖移或压刻形成的变形层理。不同成因的变形层理具有其独特的几何学特征,可以作为其成因的可靠标志,同样也可以作为区别于地震成因的可靠标志。黄河下游发育的变形层理与黄河下游复杂的水动力条件和气候条件及沉积物粒度极细有密切关系。
        Deformation bedding is a relatively common and important example of a particular type of soft sediment deformation structure(SSDS). These have recently been the research focus of various disciplines, such as sedimentology, engineering geology, seismology and structural geology. The main difficulty and problem at present concerns the recognition of seismic and non-seismic SSDS. A large number of studies have shown a considerable amount of deformation bedding in the lower reaches of the Yellow River, and there is strong evidence that it is by no means always the result of earthquake activity. The study of deformation bedding in detail is of importance for developing identification and division criteria between seismic and non-seismic SSDS.There are many types of deformation bedding from different causes in the Yellow River and distributary channels: typical convolute bedding and very irregular general deformation bedding, whose origins include density or gravity inversion, or sliding caused by wave action, or water and sliding sediments traction, or even dragging or pressure carving by blocks of ice. Deformation bedding from different causes each has unique geometrical features that are useful as reliable markers of its genesis, and which may also be used as reliable criteria for recognizing its seismic(or non-seismic) origin. In addition to the complex hydrodynamic and climatic conditions of the lower Yellow River, the development of deformation bedding is mainly related to the extremely fine particle size of the sediments.
引文
[1] Sims J D. Earthquake-induced structures in sediments of van Norman Lake, San Fernando, California[J]. Science, 1973, 182(4108): 161-163.
    [2] Seilacher A. Fault-graded beds interpreted as seismites[J]. Sedimentology, 1969, 13(1/2): 155-159.
    [3] 冯增昭,鲍志东,郑秀娟,等. 中国软沉积物变形构造及地震岩研究简评[J]. 古地理学报,2017,19(1):7-12. [Feng Zengzhao, Bao Zhidong, Zheng Xiujuan, et al. Researches of soft-sediment deformation structures and seismites in China: A brief review[J]. Journal of Palaeogeography, 2017, 19(1): 7-12.]
    [4] 苏德辰,孙爱萍,郑桂森,等. 北京西山寒武系滑塌构造的初步研究[J]. 地质学报,2013,87(8):1067-1075.[Su Dechen, Sun Aiping, Zheng Guisen, et al. A preliminary research on the slump structures in Cambrian system in the western hills of Beijing[J]. Acta Geologica Sinica, 2013, 87(8): 1067-1075.]
    [5] 乔秀夫,李海兵,高林志. 华北地台震旦纪—早古生代地震节律[J]. 地学前缘,1997,4(3/4):155-160.[Qiao Xiufu, Li Haibing, Gao Linzhi. Qiao X. Sinian-Early Paleozoic seismic rhythms on the North China platform[J]. Earth Science Frontiers, 1997, 4(3/4): 155-160.]
    [6] 杜远生,余文超. 地震和非地震引发的软沉积物变形[J]. 古地理学报,2017,19(1):65-72.[Du Yuansheng, Yu Wenchao. Earthquake-caused and non-earthquake-caused soft-sediment deformations[J]. Journal of Palaeogeography, 2017, 19(1): 65-72.]
    [7] 钟建华,马在平. 黄河三角洲变形层理的研究[J]. 沉积学报,1998,16(1):45-51. [Zhong Jianhua, Ma Zaiping. Study on the deformation bedding in the delta of Yellow River[J]. Acta Sedimentologica Sinica, 1998, 16(1): 45-51.]
    [8] 钟建华,侯启军,钟延秋. 黄河三角洲(泄水)包卷层理的成因研究[J]. 地质论评,1999,45(3):306-312. [Zhong Jianhua, Hou Qijun, Zhong Yanqiu. Genesis of the (Sluicing) convolute bedding in the Yellow River delta[J]. Geological Review, 1999, 45(3): 306-312.]
    [9] Zhong J H, Wen Z F, Wang G M, et al. Air-discharge pits on the Yellow River delta plain[J]. Sedimentary Geology, 2004, 170(1/2): 1-20.
    [10] Zhong J H, Wang H Q, Yong L, et al. Ice-water pits upon the Yellow River delta plain[J]. Sedimentary Geology, 2006, 187(1/2): 1-10.
    [11] Zhong J H, Ni L T, Sun N L, et al. A new unusual ice-induced sedimentary structure: the silt mushroom[J]. Scientific Reports, 2016, 6: 36945.
    [12] Allen J R L, Banks N L. An interpretation and analysis of recumbent-folded deformed cross-bedding[J]. Sedimentology, 1972, 19(3/4): 257-284.
    [13] 钟建华,李理. 黄河断流后三角洲(水上平原)的滑塌构造研究[J]. 沉积学报,2000,18(1):7-12. [Zhong Jianhua, Li Li. Study of the slump structure on the Yellow River delta during its in zero[J]. Acta Sedimentologica Sinica, 2000, 18(1): 7-12.]
    [14] Molina J M, Alfaro P, Moretti M, et al. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain)[J]. Terra Nova, 1998, 10(3): 145-150.
    [15] Alfaro P, Delgado J, Estévez A, et al. Liquefaction and fluidization structures in messinian storm deposits (Bajo Segura Basin, Betic Cordillera, Southern Spain)[J]. International Journal of Earth Sciences, 2002, 91(3): 505-513.
    [16] Pettijohn F J, Potter P E, Siever R. Sand and sandstone[M]. New York: Springer-Verlag, 1972.
    [17] Dzuynski S, Smith A J. Convolute lamination, its origin, preservation, and directional significance[J]. Journal of Sedimentary Research, 1963, 33(3): 616-627.
    [18] Collinson J D. Sedimentary deformational structures[M]//Maltman A J. The geological deformation of sediments. Dordrecht: Springer, 1994: 95-125.
    [19] Maltman A. The geological deformation of sediments[M]. Dordrecht: Springer, 1994.
    [20] Kotlia B S, Rawat K S. Soft sediment deformation structures in the Garbyang palaeolake: Evidence for the past shaking events in the Kumaun Tethys Himalaya[J]. Current Science, 2004, 87(3): 377-379.
    [21] Allen J R L. The possible mechanics of convolute lamination in graded sand beds[J]. Journal of the Geological Society, 1977, 134(1): 19-31.
    [22] Rossetti D F, Santos A E Jr. Events of sediment deformation and mass failure in Upper Cretaceous estuarine deposits (Cametá Basin, northern Brazil) as evidence for seismic activity[J]. Sedimentary Geology, 2003, 161(1/2): 107-130.
    [23] Brett C E, McLaughlin P I, Cornell S R, et al. Comparative sequence stratigraphy of two classic Upper Ordovician successions, Trenton Shelf (New York-Ontario) and Lexington Platform (Kentucky-Ohio): implications for eustasy and local tectonism in eastern Laurentia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(2/3/4): 295-329.
    [24] de Boer P L. Convolute lamination in modern sands of the estuary of the Oosterschelde, the Netherlands, formed as the result of entrapped air[J]. Sedimentology, 1979, 26(2): 283-294.
    [25] Owen G. Deformation processes in unconsolidated sands[J]. Geological Society, London, Special Publications, 1987, 29(1): 11-24.
    [26] Wentworth C M, Wentworth C M. Dish structure, a primary sedimentary structure in coarse turbidites: Abstract[J]. AAPG Bulletin, 1967, 51(3) : 485.
    [27] Rodríguez-Pascua M A, Calvo J P, De Vicente G, et al. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene[J]. Sedimentary Geology, 2000, 135(1/2/3/4): 117-135.
    [28] Dalrymple R W. Wave-induced liquefaction: a modern example from the bay of fundy[J]. Sedimentology, 1979, 26(6): 835-844.
    [29] 钟建华,倪晋仁,宋维奇,等. 黄河三角洲上的冰成隆丘的研究[J]. 沉积学报,2001,19(3):357-362.[Zhong Jianhua, Ni Jinren, Song Weiqi, et al. Study on the ice-induced heaving in Yellow River delta[J]. Acta Sedimentologica Sinica, 2001, 19(3): 357-362.]
    [30] 钟建华,王冠民,王夕宾,等. 黄河下游冰成滑塌与塌陷构造的研究[J]. 沉积学报,2002,20(2):261-266.[Zhong Jianhua, Wang Guanmin, Wang Xibin, et al. Study on the ice-induced slump and subsidence structures in the lower course of Yellow River[J]. Acta Sedimentologica Sinica, 2002, 20(2): 261-266.]
    [31] 钟建华,王洪宝. 黄河下游河道的冻裂研究[J]. 沉积学报,2002,20(4):650-655.[Zhong Jianhua, Wang Hongbao. Study on the frozen cracks in the lower reaches of Yellow River[J]. Acta Sedimentologica Sinica, 2002, 20(4): 650-655.]
    [32] 钟建华,倪良田,郝兵,等. 鄂尔多斯盆地下白垩统大型类碟状构造的发现及其地质意义[J]. 古地理学报,2017,19(1):73-88.[Zhong Jianhua, Ni Liangtian, Hao Bing, et al. Discovery of large-scale dish-like structures of the Lower Cretaceous in Ordos Basin and its geological significance[J]. Journal of Palaeogeography, 2017, 19(1): 73-88.]
    [33] 张昌民,王绪龙,尹太举,等. 新疆乌伦古湖冰滑痕特征及其形成机理[J]. 地质论评,2017,63(1):35-49.[Zhang Changmin, Wang Xulong, Yin Taiju, et al. Characteristics and formation mechanism of ice slide structures on the coast of Ulungur Lake, Xinjiang[J]. Geological Review, 2017, 63(1): 35-49.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700