用户名: 密码: 验证码:
泛素链修饰类型研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in ubiquitin chain linkage
  • 作者:付业胜 ; 王平 ; 胡荣贵 ; 张令强
  • 英文作者:FU Ye-Sheng;WANG Ping;HU Rong-Gui;ZHANG Ling-Qiang;State Key Laboratory of Proteomics,Beijing Institute of Lifeomics;School of Medicine,Tongji University;CAS Center for Excellence in Molecular and Cell Science,Institute of Biochemistry and Cell Biology,Chinese Academy of Sciences;
  • 关键词:泛素修饰类型 ; 泛素连接酶 ; 去泛素化酶 ; 磷酸化和乙酰化泛素
  • 英文关键词:ubiquitin linkage type;;ubiquitin ligase;;deubiqutinase;;acetylated and phosphorylated ubiquitin
  • 中文刊名:SMKX
  • 英文刊名:Chinese Bulletin of Life Sciences
  • 机构:军事科学院军事医学科学院生命组学研究所蛋白质组学国家重点实验室;同济大学医学院;中国科学院上海生物化学与细胞生物学研究所中国科学院分子细胞科学卓越中心;
  • 出版日期:2018-04-28 16:34
  • 出版单位:生命科学
  • 年:2018
  • 期:v.30;No.229
  • 基金:国家自然科学基金项目(31330021,81521064);; 北京市科委生命科学领域前沿技术培育项目(Z151100003915083)
  • 语种:中文;
  • 页:SMKX201804016
  • 页数:11
  • CN:04
  • ISSN:31-1600/Q
  • 分类号:124-134
摘要
泛素化修饰的蛋白质底物广泛参与蛋白质降解、胞内蛋白质转运、细胞信号转导、自噬和DNA损伤修复等重要的生物学过程。泛素化修饰包括单泛素化修饰和多泛素化修饰。因泛素分子含有7个赖氨酸残基和1个N端甲硫氨酸残基,多泛素化修饰又可分为同型或异型的多聚泛素化修饰。此外,泛素分子的乙酰化修饰和磷酸化修饰大大增加了泛素链的复杂性。不同泛素链的形成往往依赖泛素连接酶或者去泛素化酶。现综述不同类型的泛素链修饰类型的编辑、识别、去除机制及其生物学功能,并讨论泛素分子自身的乙酰化和磷酸化修饰。
        Protein ubiquitination is widely involved in multiple celluar processes, such as protein degradation, intracellular protein trafficking, cellular signaling transduction, autophagy and DNA damage responses. Ubiquitin modification includes monoubiquitination and polyubiquitin modification. Since ubiquitin contains seven lysine residues and one N-terminal methionine residue, the ubiquitin chains are divided into homotypic or heterotypic linkages. In addition, ubiquitin acetylation and phosphorylation improve the complexity of ubiquitin chains. There are a series of ubiquitin ligases and deubiqutinases editing different ubiquitin chains. This review focuses on different ubiquitin linkage types to discuss how they are formed, recognized and erased, and what biological functions they have. The acetylated and phosphorylated ubiquitins are also discussed.
引文
[1]Hershko A,Ciechanover A.The ubiquitin system.Annu Rev Biochem,1998,67:425-79
    [2]Ohtake F,Saeki Y,Sakamoto K,et al.Ubiquitin acetylation inhibits polyubiquitin chain elongation.EMBORep,2015,16:192-201
    [3]Kondapalli C,Kazlauskaite A,Zhang N,et al.PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65.Open Biol,2012,2:120080
    [4]Shiba-Fukushima K,Imai Y,Yoshida S,et al.PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy.Sci Rep,2012,2:1002
    [5]Kazlauskaite A,Kondapalli C,Gourlay R,et al.Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65.Biochem J,2014,460:127-39
    [6]Kane LA,Lazarou M,Fogel AI,et al.PINK1phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity.J Cell Biol,2014,205:143-53
    [7]Koyano F,Okatsu K,Kosako H,et al.Ubiquitin is phosphorylated by PINK1 to activate parkin.Nature,2014,510:162-6
    [8]Husnjak K,Dikic I.Ubiquitin-binding proteins:decoders of ubiquitin-mediated cellular functions.Annu Rev Biochem,2012,81:291-322
    [9]Clague MJ,Coulson JM,Urbe S.Cellular functions of the DUBs.J Cell Sci,2012,125:277-86
    [10]Swatek KN,Komander D.Ubiquitin modifications.Cell Res,2016,26:399-422
    [11]Chen ZJ,Sun LJ.Nonproteolytic functions of ubiquitin in cell signaling.Mol Cell,2009,33:275-86
    [12]Matsumoto ML,Wickliffe KE,Dong KC,et al.K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody.Mol Cell,2010,39:477-84
    [13]Rittinger K,Ikeda F.Linear ubiquitin chains:enzymes,mechanisms and biology.Open Biol,2017,7:170026
    [14]Yuan WC,Lee YR,Lin SY,et al.K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking.Mol Cell,2014,54:586-600
    [15]Elia AE,Boardman AP,Wang DC,et al.Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response.Mol Cell,2015,59:867-81
    [16]Komander D,Rape M.The ubiquitin code.Annu Rev Biochem,2012,81:203-29
    [17]Clague MJ,Urbe S.Ubiquitin:same molecule,different degradation pathways.Cell,2010,143:682-5
    [18]Jin L,Williamson A,Banerjee S,et al.Mechanism of ubiquitin-chain formation by the human anaphasepromoting complex.Cell,2008,133:653-65
    [19]Garnett MJ,Mansfeld J,Godwin C,et al.UBE2Selongates ubiquitin chains on APC/C substrates to promote mitotic exit.Nat Cell Biol,2009,11:1363-9
    [20]Wu T,Merbl Y,Huo Y,et al.UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex.Proc Natl Acad Sci USA,2010,107:1355-60
    [21]Grice GL,Lobb IT,Weekes MP,et al.The Proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains.Cell Rep,2015,12:545-53
    [22]Mevissen TE,Hospenthal MK,Geurink PP,et al.OTUdeubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis.Cell,2013,154:169-84
    [23]Hu H,Brittain GC,Chang JH,et al.OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3.Nature,2013,494:371-4
    [24]Luong le A,Fragiadaki M,Smith J,et al.Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination.Circ Res,2013,112:1583-91
    [25]Hu H,Wang H,Xiao Y,et al.Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination.J Exp Med,2016,213:399-414
    [26]Pareja F,Ferraro DA,Rubin C,et al.Deubiquitination of EGFR by cezanne-1 contributes to cancer progression.Oncogene,2012,31:4599-608
    [27]Mevissen TET,Kulathu Y,Mulder MPC,et al.Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase cezanne.Nature,2016,538:402-5
    [28]Bremm A,Moniz S,Mader J,et al.Cezanne(OTUD7B)regulates HIF-1αhomeostasis in a proteasome-independent manner.EMBO Rep,2014,15:1268-77
    [29]Wang B,Jie Z,Joo D,et al.TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2signalling.Nature,2017,545:365-9
    [30]Xu Z,Pei L,Wang L,et al.Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma.Oncogene,2014,33:2836-45
    [31]Yamanaka K,Ishikawa H,Megumi Y,et al.Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2.Nat Cell Biol,2003,5:336-40
    [32]Kirisako T,Kamei K,Murata S,et al.A ubiquitin ligase complex assembles linear polyubiquitin chains.EMBO J,2006,25:4877-87
    [33]Tokunaga F,Sakata S,Saeki Y,et al.Involvement of linear polyubiquitylation of NEMO in NF-κB activation.Nat Cell Biol,2009,11:123-32
    [34]Rahighi S,Ikeda F,Kawasaki M,et al.Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation.Cell,2009,136:1098-109
    [35]Yamamoto M,Okamoto T,Takeda K,et al.Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling.Nat Immunol,2006,7:962-70
    [36]Ikeda F,Deribe YL,Skanland SS,et al.SHARPIN forms a linear ubiquitin ligase complex regulating NF-κBactivity and apoptosis.Nature,2011,471:637-41
    [37]Tokunaga F,Nakagawa T,Nakahara M,et al.SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex.Nature,2011,471:633-6
    [38]Gerlach B,Cordier SM,Schmukle AC,et al.Linear ubiquitination prevents inflammation and regulates immune signalling.Nature,2011,471:591-6
    [39]Peltzer N,Rieser E,Taraborrelli L,et al.HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death.Cell Rep,2014,9:153-65
    [40]Hrdinka M,Gyrd-Hansen M.The Met1-linked ubiquitin machinery:emerging themes of(de)regulation.Mol Cell,2017,68:265-80
    [41]Komander D,Lord CJ,Scheel H,et al.The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module.Mol Cell,2008,29:451-64
    [42]Komander D,Reyes-Turcu F,Licchesi JD,et al.Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains.EMBO Rep,2009,10:466-73
    [43]Elliott PR,Leske D,Hrdinka M,et al.SPATA2 links CYLD to LUBAC,activates CYLD,and controls LUBACsignaling.Mol Cell,2016,63:990-1005
    [44]Kupka S,De Miguel D,Draber P,et al.SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes.Cell Rep,2016,16:2271-80
    [45]Schlicher L,Wissler M,Preiss F,et al.SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death.EMBO Rep,2016,17:1485-97
    [46]Wagner SA,Satpathy S,Beli P,et al.SPATA2 links CYLDto the TNF-αreceptor signaling complex and modulates the receptor signaling outcomes.EMBO J,2016,35:1868-84
    [47]Elliott PR,Nielsen SV,Marco-Casanova P,et al.Molecular basis and regulation of OTULIN-LUBAC interaction.Mol Cell,2014,54:335-48
    [48]Schaeffer V,Akutsu M,Olma MH,et al.Binding of OTULIN to the PUB domain of HOIP controls NF-κBsignaling.Mol Cell,2014,54:349-61
    [49]Lork M,Verhelst K,Beyaert R.CYLD,A20 and OTULINdeubiquitinases in NF-κB signaling and cell death:so similar,yet so different.Cell Death Differ,2017,24:1172-83
    [50]Rivkin E,Almeida SM,Ceccarelli DF,et al.The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis.Nature,2013,498:318-24
    [51]Damgaard RB,Walker JA,Marco-Casanova P,et al.The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity.Cell,2016,166:1215-30 e20
    [52]Draber P,Kupka S,Reichert M,et al.LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes.Cell Rep,2015,13:2258-72
    [53]Shembade N,Ma A,Harhaj EW.Inhibition of NF-κBsignaling by A20 through disruption of ubiquitin enzyme complexes.Science,2010,327:1135-9
    [54]Fei C,Li Z,Li C,et al.Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-catenin signaling.Mol Cell Biol,2013,33:4095-105
    [55]Chastagner P,Israel A,Brou C.Itch/AIP4 mediates deltex degradation through the formation of K29-linked polyubiquitin chains.EMBO Rep,2006,7:1147-53
    [56]H u a n g H,J e o n M S,L i a o L,e t a l.K 3 3-l i n k e d polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling.Immunity,2010,33:60-70
    [57]Yang M,Chen T,Li X,et al.K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8+T cell activation.Nat Immunol,2015,16:1253-62
    [58]Kristariyanto YA,Abdul Rehman SA,Campbell DG,et al.K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29polyubiquitin.Mol Cell,2015,58:83-94
    [59]Michel MA,Elliott PR,Swatek KN,et al.Assembly and specific recognition of k29-and k33-linked polyubiquitin.Mol Cell,2015,58:95-109
    [60]Licchesi JD,Mieszczanek J,Mevissen TE,et al.An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains.Nat Struct Mol Biol,2011,19:62-71
    [61]Tran H,Hamada F,Schwarz-Romond T,et al.Trabid,a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains.Genes Dev,2008,22:528-42
    [62]Fernando MD,Kounatidis I,Ligoxygakis P.Loss of Trabid,a new negative regulator of the Drosophila immune-deficiency pathway at the level of TAK1,reduces life span.PLoS Genet,2014,10:e1004117
    [63]Jin J,Xie X,Xiao Y,et al.Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid.Nat Immunol,2016,17:259-68
    [64]Lin M,Zhao Z,Yang Z,et al.USP38 inhibits type Iinterferon signaling by editing TBK1 ubiquitination through NLRP4 signalosome.Mol Cell,2016,64:267-81.
    [65]Brown JS,Jackson SP.Ubiquitylation,neddylation and the DNA damage response.Open Biol,2015,5:150018
    [66]Gatti M,Pinato S,Maiolica A,et al.RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage.Cell Rep,2015,10:226-38
    [67]Wang Q,Liu X,Cui Y,et al.The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING.Immunity,2014,41:919-33
    [68]Wang Q,Huang L,Hong Z,et al.The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response.PLoS Pathog,2017,13:e1006264
    [69]Chen Y,Wang L,Jin J,et al.p38 inhibition provides antiDNA virus immunity by regulation of USP21 phosphorylation and STING activation.J Exp Med,2017,214:991-1010
    [70]Zhao C,Jia M,Song H,et al.The E3 ubiquitin ligase TRIM40 attenuates antiviral immune responses by targeting MDA5 and RIG-I.Cell Rep,2017,21:1613-23
    [71]Cao Z,Conway KL,Heath RJ,et al.Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation.Immunity,2015,43:715-26
    [72]Liu J,Han C,Xie B,et al.Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO.Nat Immunol,2014,15:612-22
    [73]Nucifora FC Jr,Nucifora LG,Ng CH,et al.Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1.Nat Commun,2016,7:11792
    [74]Wu-Baer F,Lagrazon K,Yuan W,et al.The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin.J Biol Chem,2003,278:34743-6
    [75]Jin SM,Lazarou M,Wang C,et al.Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL.J Cell Biol,2010,191:933-42
    [76]Narendra DP,Jin SM,Tanaka A,et al.PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.PLoS Biol,2010,8:e1000298
    [77]Ordureau A,Heo JM,Duda DM,et al.Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.Proc Natl Acad Sci USA,2015,112:6637-42
    [78]Cunningham CN,Baughman JM,Phu L,et al.USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria.Nat Cell Biol,2015,17:160-9
    [79]Durcan TM,Tang MY,Perusse JR,et al.USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin.EMBO J,2014,33:2473-91
    [80]Michel MA,Swatek KN,Hospenthal MK,et al.Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling.Mol Cell,2017,68:233-46.e5
    [81]Hu R,Hochstrasser M.Recent progress in ubiquitin and ubiquitin-like protein(Ubl)signaling.Cell Res,2016,26:389-90
    [82]Stolz A,Dikic I.Heterotypic ubiquitin chains:Seeing is believing.Trends Cell Biol,2017,28:1-3
    [83]Meyer HJ,Rape M.Enhanced protein degradation by branched ubiquitin chains.Cell,2014,157:910-21
    [84]Hospenthal MK,Freund SM,Komander D.Assembly,analysis and architecture of atypical ubiquitin chains.Nat Struct Mol Biol,2013,20:555-65
    [85]Liu Z,Chen P,Gao H,et al.Ubiquitylation of autophagy receptor optineurin by HACE1 activates selective autophagy for tumor suppression.Cancer Cell,2014,26:106-20
    [86]Sheng X,You Q,Zhu H,et al.Bacterial effector NleLpromotes enterohemorrhagic E.coli-induced attaching and effacing lesions by ubiquitylating and inactivating JNK.PLoS Pathog,2017,13:e1006534
    [87]Emmerich CH,Ordureau A,Strickson S,et al.Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains.Proc Natl Acad Sci USA,2013,110:15247-52
    [88]Ronau JA,Beckmann JF,Hochstrasser M.Substrate specificity of the ubiquitin and Ubl proteases.Cell Res,2016,26:441-56
    [89]Ordureau A,Sarraf SA,Duda DM,et al.Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis.Mol Cell,2014,56:360-75
    [90]Wauer T,Swatek KN,Wagstaff JL,et al.Ubiquitin Ser65phosphorylation affects ubiquitin structure,chain assembly and hydrolysis.EMBO J,2015,34:307-25
    [91]Ohtake F,Tsuchiya H.The emerging complexity of ubiquitin architecture.J Biochem,2017,161:125-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700