用户名: 密码: 验证码:
SPS合成碳纳米管增强Nb/Nb_5Si_3复合材料的组织和性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Properties of Nb/Nb_5Si_3 Composites Strengthened with CNTs by Spark Plasma Sintering
  • 作者:龙文元 ; 陈本隆 ; 沈先君
  • 英文作者:Long Wenyuan;Chen Benlong;Shen Xianjun;Nanchang Hangkong University;Shangrao Vocational & Technical College;
  • 关键词:Nb/Nb5Si3复合材料 ; 多壁碳纳米管 ; 力学性能 ; 放电等离子烧结(SPS)
  • 英文关键词:Nb/Nb5Si3 in-situ composites;;MWCNTs;;mechanical properties;;spark plasma sintering
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:南昌航空大学;上饶职业技术学院;
  • 出版日期:2018-07-15
  • 出版单位:稀有金属材料与工程
  • 年:2018
  • 期:v.47;No.384
  • 基金:国家自然科学基金(51271091);; 江西省教育厅科技项目(GJJ12420)
  • 语种:中文;
  • 页:COSE201807045
  • 页数:5
  • CN:07
  • ISSN:61-1154/TG
  • 分类号:294-298
摘要
采用放电等离子烧结法(SPS)原位合成了多壁碳纳米管(CNTS)增强Nb/Nb_5Si_3复合材料,研究了不同含量的碳纳米管对Nb/Nb_5Si_3复合材料的组织和性能的影响。研究表明:Nb/Nb5Si3复合材料的相组成主要为Nb、α-Nb_5Si_3和γ-Nb5_Si_3,当CNTS加入量达到2%(质量分数)时开始出现了新相Nb_4C_3。复合材料的力学性能(抗压缩强度、断裂韧性)随着碳纳米管含量的增加而增加,加入2%CNTs时达到最大值,抗压缩强度和断裂韧性提高幅度分别达到56%、31%;随后加入3%CNTs时,抗压缩强度和断裂韧性都有所降低。复合材料断口的扫描电镜照片表明,复合材料的断裂模式主要为脆性解理断裂并有部分沿晶断裂,复合材料的增韧化作用主要是由于碳纳米管的拔出效应和桥联机制。
        The Nb/Nb_5 Si_3 in-situ composite material strengthened with multi-walled CNTs was prepared by Spark Plasma Sintering(SPS).The effects of CNTs content on microstructure and properties of Nb/Nb_5 Si_3 in situ composites were investigated. The results show that the composites are composed of Nb,α-Nb_5 Si_3,and y-Nb5 Si3 phase. When the addition of CNTs reaches 2 wt%,a new phase Nb_4 C_3 is formed in the composites. The compressive strength and fracture toughness of the composites increase obviously with the increase of CNTs content. When the addition of CNTs is 2 wt%, the compressive strength and fracture toughness reach the maximum values, which increase by 56% and 31%, respectively. When the CNTs content is 3 wt%, the compressive strength and fracture toughness decrease. SEM fracture images show that the fracture appearance of the composites consists of brittle cleavage fracture and partial intercrystalline fracture. The toughening mechanisms of composites are mainly due to pull-out and bridging of the CNTs.
引文
[1]Sha Jiangbo(沙江波).Aeronautical Manufacturing Technology(航空制造技术报)[J],2010,14:57
    [2]Zhen Xin(郑欣),Bai Run(白润),Cai Xiaomei(蔡晓梅)et al.Materials China(中国材料进展)[J],2014(z1):586
    [3]Chen Zhe(陈哲),Yan Youwei(严有为).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2006,35(3):484
    [4]Long Wenyuan(龙文元),Xia Chun(夏春),Chen Zhe(陈哲)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2010,39(8):1427
    [5]Xiong Bowen,Long Wenyuan,Chen Zhe et al.Journal of Alloys and Compounds[J],2009,471(1-2):404
    [6]Xiong Bowen(熊博文),Long Wenyuan(龙文元),Chen Zhe(陈哲).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2009,38(6):1112
    [7]Ma Chaoli(马朝利),Kasama A(笠间昭夫),Tanaka R(田中良平)et al.Transactions of Metal Heat Treatment(金属热处理学报)[J],2000,21(2):83
    [8]Jin Z X,Sun X,Xu G Q et al.Chem Phys lett[J],2000,318(6):505
    [9]Chaudhary S,Lu H W,Muller A M et al.Nano Lett[J],2007,7(7):1973
    [10]Wu Xiwang(武玺旺),Xiao Jianzhong(肖建中),Xia Feng(夏风)et al.Materials Review(材料导报)[J],2011,25(9):16
    [11]Bocanegra-Bernal M H.Ceramics International[J],2016,42(1):2054
    [12]Zhang Xiaobo(章晓波),Liu Ning(刘宁),Li Yong(李勇).Acta Materiae Compositae Sinica(复合材料学报)[J],2009,26(1):91
    [13]Balázsi C,Shen Z,Kónya Z et al.Composites Science and Technology[J],2005,65(5):727
    [14]Qiao Yingjie(乔英杰),Zhang Xiaohong(张晓红),Song Leping(宋乐平)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2007,36(S1):95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700