用户名: 密码: 验证码:
青藏高原东北缘海原-六盘山断裂带现今地壳应力环境的数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical modeling of current crustal stress state in Haiyuan-Liupanshan fault system of NE Tibet
  • 作者:庞亚瑾 ; 杨少华 ; 李海兵 ; 程惠红 ; 石耀霖
  • 英文作者:PANG Ya Jin;YANG Shao Hua;LI Hai Bing;CHENG Hui Hong;SHI Yao Lin;The First Monitoring and Application Center,China Earthquake Administration;Key Laboratory of Deep-Earth Dynamics,Institute of Geology,Chinese Academy of Geological Sciences;CAS Key Laboratory of Computational Geodynamics,University of Chinese Academy of Sciences;
  • 关键词:青藏高原东北缘 ; 海原-六盘山断裂带 ; 地壳形变 ; 应力环境 ; 数值模拟
  • 英文关键词:NE-Tibet;;Haiyuan-Liupanshan fault;;Crustal deformation;;Crustal stress state;;Numerical modeling
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地震局第一监测中心;深地动力学重点实验室中国地质科学院地质研究所;中国科学院计算地球动力学重点实验室中国科学院大学;
  • 出版日期:2019-06-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:地震科技星火计划(XH19063Y);; 国家自然科学基金项目(41804091、41830217)联合资助
  • 语种:中文;
  • 页:YSXB201906013
  • 页数:9
  • CN:06
  • ISSN:11-1922/P
  • 分类号:252-260
摘要
海原-六盘山断裂是青藏高原东北缘的大型边界断裂带,是中国大陆典型的地震危险区。地壳构造加载特征的定量研究有助于分析区域孕震环境,参考青藏高原东北缘GPS形变和岩石圈精细结构等资料,本文建立海原-六盘山断裂带周缘的三维岩石圈分层模型,分析现今构造加载作用下区域地壳形变和应力演化特征。数值计算结果显示:青藏高原东北缘现今处于以北东-南西向的水平挤压为主导和北西-南东向的水平引张的变形特征。青藏高原东北缘中-下地壳流变性质影响上覆脆性地壳应力环境,中地壳较低粘滞系数对应的模型地壳应力计算值与研究区实际地壳应力场相近。海原断裂中-西段构造加载作用显著,具有相对较高的库仑应力积累和最大剪应力分布;而六盘山断裂周缘地壳应力和最大剪应力小于海原断裂带。构造应力积累的空间分布差异说明六盘山断裂具有较弱的构造孕震环境,而研究区走滑型断裂的孕震加载作用显著。尽管六盘山处于较低的应力状态,但仍不能轻易忽视其长期存在的强震空区所暗示的发震潜力。
        Haiyuan-Liupanshan fault system is a huge boundary fault in Northeast Tibet,as well as the typical seismic hazard zone in China mainland,which plays an important role in accommodating the outward expansion of Tibet Plateau. Quantitative research on the features of crustal tectonic loading will contribute to analyzing the regional seismogenic environment. Based on the GPS velocities and fine lithospheric structure of NE Tibet,we set up a series of 3-D layered lithospheric models of the research area surrounding Haiyuan-Liupanshan fault system,and analyze the crustal deformation and stress evolution driven by tectonic loading. Furthermore,we analyze the influence of rheology of middle crust on stress state of upper crust in NE Tibet,via comparative numerical tests. The FEM numerical results show that:( 1) The NE Tibet is experienced with dominant NE-SW horizontal compression and slight NW-SE horizontal extension,with more pronounced stress accumulation near western part of Haiyuan fault zone;( 2) The rheology of mid-lower crust in NE Tibet affects the stress states in the upper crust. In the model with lower viscosity in middle crust of NE Tibet,the simulated tectonic stress state approximates the current stress states revealed by earthquake focal mechanisms;( 3) Driven by tectonic loading,the mid-western segment of Haiyuan fault is distributed with high Coulomb stress changes and maximum shear stress. While the accumulations of crustal stress and maximum shear stress are relatively lower in Liupanshan fault compared with those near Haiyuan fault zone. The differences in spatial distribution of tectonic stress accumulation suggest that Liupanshan fault zone is experienced with weaker seismogenic environment,and the seismogenic loading effect on strike-slip faults in the research area is more remarkable.Despite the low crustal stress state around the Liupanshan fault zone,we still can't ignore the potential of strong earthquakes revealed by long term seismic gap.
引文
Bao XW,Song XD,Xu MJ,Wang LS,Sun XX,Mi N,Yu DY and Li H.2013.Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications.Earth and Planetary Science Letters,369-370:129-137
    Burchfiel BC,Zhang PZ,Wang YP,Zhang WQ,Song FM,Deng QD,Molnar P and Royden L.1991.Geology of the Haiyuan fault zone,Ningxia-Hui Autonomous Region,China,and its relation to the evolution of the northeastern margin of the Tibetan Plateau.Tectonics,10(6):1091-1110
    Chen JH,Liu QY,Li SC,Guo B and Lai YG.2005.Crust and upper mantle S-wave velocity structure across northeastern Tibetan Plateau and Ordos block.Chinese Journal of Geophysics,48(2):333-342(in Chinese with English abstract)
    Department of Earthquake Disaster Prevention,China Earthquake Administration.1995.The Catalogue of Chinese Historical Strong Earthquakes.Beijing:Seismological Press,1-514(in Chinese)
    Deng QD,Sung FM,Zhu SL,Li ML,Wang TL,Zhang WQ,Burchfiel BC,Molnar P and Zhang PZ.1984.Active faulting and tectonics of the Ningxia-Hui Autonomous Region,China.Journal of Geophysical Research:Solid Earth,89(B6):4427-4445
    Deng QD,Zhang WQ,Zhang PZ,Jiao DC,Song FM,Wang YP,Burchfiel BC,Molnar P,Royden L,Chen SF,Zhu SL and Chai ZZ.1989.Haiyuan strike-slip fault zone and its compressional structures of the end.Seismology and Geology,11(1):1-14(in Chinese with English abstract)
    Deng QD,Zhang PZ,Ran YK,Yang XP,Min W and Chu QZ.2003.Basic characteristics of active tectonics of China.Science in China(Series D),46(4):356-372
    Du F,Wen XZ,Feng JG,Liang MJ,Long F and Wu J.2018.Seismotectonics and seismic potential of the Liupanshan fault zone(LPSFZ),China.Chinese Journal of Geophysics,61(2):545-559(in Chinese with English abstract)
    Gan WJ,Zhang PZ,Shen ZK,Niu ZJ,Wang M,Wan YG,Zhou DMand Cheng J.2007.Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements.Journal of Geophysical Research:Solid Earth,112(B8):B08416
    Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Guo SM,Chen ZT,Dai HG and Cifuentes I.1995.Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the‘Tianzhu gap’,on the western Haiyuan Fault,Gansu(China).Geophysical Journal International,120(3):599-645
    Guo XY,Gao R,Wang HY,Li WH,Keller GR,Xu X,Li HQ and Encarnacion J.2015.Crustal architecture beneath the Tibet-Ordos transition zone,NE Tibet,and the implications for plateau expansion.Geophysical Research Letters,42(24):10631-10639
    Han S,Han JT,Liu GX,Wang HY and Liang HD.2016.Crust and upper mantle electrical structure and tectonic deformation of the northeastern margin of the Tibetan Plateau and the adjacent Ordos Block.Chinese Journal of Geophysics,59(11):4126-4138(in Chinese with English abstract)
    Hao M,Li YH and Qin SL.2017.Spatial and temporal distribution of slip rate deficit across Haiyuan-Liupan Shan fault zone constrained by GPS data.Seismologyand Geology,39(3):471-484(in Chinese with English abstract)
    Jiang ZS,Ma ZJ,Zhang X and Chen B.2001.Analysis of recent horizontal crustal strain field and tectonic deformation in the northeast margin of Qinghai-Tibet block.Seismologyand Geology,23(3):337-345(in Chinese with English abstract)
    Li CY,Zhang PZ,Yin JH and Min W.2009.Late Quaternary left-lateral slip rate of the Haiyuan fault,northeastern margin of the Tibetan Plateau.Tectonics,28(5):TC5010
    Li W,Dong YP,Guo AL,Liu XM and Zhou DW.2013.Chronology and tectonic significance of Cenozoic faults in the Liupanshan arcuate tectonic belt at the northeastern margin of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences,73:103-113
    Li YC,Shan XJ,Qu CY,Zhang YF,Song XG,Jiang Y,Zhang GH,Nocquet JM,Gong WY,Gan WJ and Wang CS.2017.Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault,northeastern Tibetan Plateau.Journal of Asian Earth Sciences,150:87-97
    Li YH,Liu M,Wang QL and Cui DX.2018.Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau.Earth and Planetary Science Letters,487:179-189
    Liu MJ,Mooney WD,Li SL,Okaya N and Detweiler S.2006.Crustal structure of the northeastern margin of the Tibetan Plateau from the Songpan-Ganzi terrane to the Ordos basin.Tectonophysics,420(1-2):253-266
    Mc Kenzie D and Priestley K.2008.The influence of lithospheric thickness variations on continental evolution.Lithos,102(1-2):1-11
    Pan SZ and Niu FL.2011.Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan Plateau from receiver function analysis.Earth and Planetary Science Letters,303(3-4):291-298
    Sun YJ,Dong SW,Fan TY,Zhang H and Shi YL.2013.3D rheological structure of the continental lithosphere beneath China and adjacent regions.Chinese Journal of Geophysics,56(9):2936-2946(in Chinese with English abstract)
    Sun YQ and Luo G.2018.Spatial-temporal migration of earthquakes in the northeastern Tibetan Plateau:Insights from a finite element model.Chinese Journal of Geophysics,61(6):2246-2264(in Chinese with English abstract)
    Tapponnier P,Xu ZQ,Roger F,Meyer B,Arnaud N,Wittlinger G and Yang JS.2001.Oblique stepwise rise and growth of the Tibet Plateau.Science,294(5547):1671-1677
    Wang WT,Kirby E,Zhang PZ,Zheng DW,Zhang GL,Zhang HP,Zheng WJ and Chai CZ.2013.Tertiary basin evolution along the northeastern margin of the Tibetan Plateau:Evidence for basin formation during Oligocene transtension.Geological Society of America Bulletin,125(3-4):377-400
    Wang WT,Zhang PZ,Zheng DW and Pang JZ.2014.Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau.Earth Science Frontiers,21(4):266-274(in Chinese with English abstract)
    Wu YQ,Jiang ZS,Liu XX,Wei WX,Zhu S,Zhang L,Zou ZY,Xiong XH,Wang QX and Du JL.2017.A comprehensive study of gridding methods for GPS horizontal velocity fields.Pure and Applied Geophysics,174(3):1201-1217
    Xiao J and He JK.2015.3D finite-element modeling of earthquake interaction and stress accumulation on main active faults around the northeastern Tibetan Plateau edge in the past 100 years.Bulletin of the Seismological Society of America,105(5):2724-2735
    Xu JR,Zhao ZX and Shichuan YS.2008.Regional characteristics of crustal stress field and tectonic motions in and around Chinese Mainland.Chinese Journal of Geophysics,51(3):770-781(in Chinese with English abstract)
    Zhan Y,Yang H,Zhao GZ,Zhao LQ and Sun XY.2017.Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan Plateau and tectonic implications.Chinese Journal of Geophysics,60(6):2371-2384(in Chinese with English abstract)
    Zhang PZ,Molnar P,Burchfiel BC,Royden L,Wang YP,Deng QD,Song FM,Zhang WQ and Jiao DC.1988.Bounds on the Holocene sliprate of the Haiyuan fault,north-central China.Quaternary Research,30(2):151-164
    Zhang PZ,Burchfiel BC,Molnar P,Zhang WQ,Jiao DC,Deng QD,Wang YP,Royden L and Song FM.1991.Amount and style of Late Cenozoic deformation in the Liupan Shan area,Ningxia Autonomous Region,China.Tectonics,10(6):1111-1129
    Zhang PZ,Min W,Deng QD and Mao FY.2005.Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault,northwestern China.Science in China(Series D),48(3):364-375
    Zheng WJ,Zhang PZ,He WG,Yuan DY,Shao YX,Zheng DW,Ge WP and Min W.2013.Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:Evidence from decadal GPS measurements and late Quaternary slip rates on faults.Tectonophysics,584:267-280
    陈九辉,刘启元,李顺成,郭飙,赖院根.2005.青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构.地球物理学报,48(2):333-342
    邓起东,张维岐,张培震,焦德成,宋方敏,汪一鹏,BC伯奇菲尔,P莫尔纳,L雷登,陈社发,朱世龙,柴炽章.1989.海原走滑断裂带及其尾端挤压构造.地震地质,11(1):1-14
    邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝.2002.中国活动构造基本特征.中国科学(D辑),32(12):1020-1030
    杜方,闻学泽,冯建刚,梁明剑,龙锋,吴江.2018.六盘山断裂带的地震构造特征与强震危险背景.地球物理学报,61(2):545-559
    国家地震局震害防御司.1995.中国历史强震目录.北京:地震出版社,1-514
    韩松,韩江涛,刘国兴,王海燕,梁宏达.2016.青藏高原东北缘至鄂尔多斯地块壳幔电性结构及构造变形研究.地球物理学报,59(11):4126-4138
    郝明,李煜航,秦姗兰.2017.基于GPS数据的海原-六盘山断裂带滑动速率亏损时空分布.地震地质,39(3):471-484
    江在森,马宗晋,张希,陈兵.2001.青藏块体东北缘水平应变场与构造变形分析.地震地质,23(3):337-345
    孙玉军,董树文,范桃园,张怀,石耀霖.2013.中国大陆及邻区岩石圈三维流变结构.地球物理学报,56(9):2936-2946
    孙云强,罗纲.2018.青藏高原东北缘地震时空迁移的有限元数值模拟.地球物理学报,61(6):2246-2264
    王伟涛,张培震,郑德文,庞建章.2014.青藏高原东北缘海原断裂带晚新生代构造变形.地学前缘,21(4):266-274
    徐纪人,赵志新,石川有三.2008.中国大陆地壳应力场与构造运动区域特征研究.地球物理学报,51(3):770-781
    詹艳,杨皓,赵国泽,赵凌强,孙翔宇.2017.青藏高原东北缘海原构造带马东山阶区深部电性结构特征及其构造意义.地球物理学报,60(6):2371-2384
    张培震,闵伟,邓起东,毛凤英.2003.海原活动断裂带的古地震与强震复发规律.中国科学(D辑),33(8):705-713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700