用户名: 密码: 验证码:
Numerical simulation of mud-flows impacting structures
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of mud-flows impacting structures
  • 作者:GRECO ; Massimo ; DI ; CRISTO ; Cristiana ; IERVOLINO ; Michele ; VACCA ; Andrea
  • 英文作者:GRECO Massimo;DI CRISTO Cristiana;IERVOLINO Michele;VACCA Andrea;DICEA, Università di Napoli Federico II;DI, Università della Campania Luigi Vanvitelli;
  • 英文关键词:Mud-Flow;;Impact force;;Two-phase model;;Power-law
  • 中文刊名:SDKB
  • 英文刊名:Journal of Mountain Science 山地科学学报(英文版)
  • 机构:DICEA, Università di Napoli Federico II;DI, Università della Campania Luigi Vanvitelli;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Mountain Science
  • 年:2019
  • 期:v.16
  • 基金:the framework of the project MISALVA,financed by the Italian Minister of the Environment,Land Protection and Sea.CUP H36C18000970005
  • 语种:英文;
  • 页:SDKB201902010
  • 页数:19
  • CN:02
  • ISSN:51-1668/P
  • 分类号:125-143
摘要
The study of the interaction of mud-flows with obstacles is important to define inundation zones in urban areas and to design the possible structural countermeasures. The paper numerically investigates the impact of a mud-flow on rigid obstacles to evaluate the force acting on them using two different depth-integrated theoretical models, Single-Phase Model(SPM) and Two-Phase Model(TPM), to compare their performance and limits. In the first one the water-sediment mixture is represented as a homogeneous continuum described by a shearthinning power-law rheology. Alternatively, the twophase model proposed by Di Cristo et al in 2016 is used, which separately accounts for the liquid and solid phases. The considered test cases are represented by a 1D landslide flowing on a steep slope impacting on a rigid wall and a 2D mud dam-break flowing on a horizontal bottom in presence of single and multiple rigid obstacles. In the 1D test case, characterized by a very steep slope, the Two-Phase Model predicts the separation between the two phases with a significant longitudinal variation of the solid concentration. In this case the results indicate appreciable differences between the two models in the estimation of both the wave celerity and the magnitude of the impact, with an overestimation of the peak force when using the Single-Phase Model. In the 2D test-cases, where the liquid and solid phases remain mixed, even if the flow fields predicted by the two models present some differences, the essential features of the interaction with the obstacles, along with the maximum impact force, are comparable.
        The study of the interaction of mud-flows with obstacles is important to define inundation zones in urban areas and to design the possible structural countermeasures. The paper numerically investigates the impact of a mud-flow on rigid obstacles to evaluate the force acting on them using two different depth-integrated theoretical models, Single-Phase Model(SPM) and Two-Phase Model(TPM), to compare their performance and limits. In the first one the water-sediment mixture is represented as a homogeneous continuum described by a shearthinning power-law rheology. Alternatively, the twophase model proposed by Di Cristo et al in 2016 is used, which separately accounts for the liquid and solid phases. The considered test cases are represented by a 1D landslide flowing on a steep slope impacting on a rigid wall and a 2D mud dam-break flowing on a horizontal bottom in presence of single and multiple rigid obstacles. In the 1D test case, characterized by a very steep slope, the Two-Phase Model predicts the separation between the two phases with a significant longitudinal variation of the solid concentration. In this case the results indicate appreciable differences between the two models in the estimation of both the wave celerity and the magnitude of the impact, with an overestimation of the peak force when using the Single-Phase Model. In the 2D test-cases, where the liquid and solid phases remain mixed, even if the flow fields predicted by the two models present some differences, the essential features of the interaction with the obstacles, along with the maximum impact force, are comparable.
引文
Aureli F,Dazzi S,Maranzoni A,et al.(2015)Experimental and numerical evaluation of the force due to the impact of a dambreak wave on a structure.Advances in Water Resources 76:29-42.https://doi.org/10.1016/j.advwatres.2014.11.009
    Bukreev VI(2009)Force action of discontinuous waves on a vertical wall.Journal Applied Mechanics and Technical Physics.50(2):278-283.https://doi.org/10.1007/s10808-009-0037-7
    Burger J,Haldenwang R,Alderman N(2010)Friction factorReynolds number relationship for laminar flow of non-Newtonian fluids in open channels of different cross-sectional shapes.Chemical Engineering Science 85:3549-3556.https://doi.org/10.1016/j.ces.2010.02.040
    Campomaggiore F,Di Cristo C,Iervolino M,et al.(2016)Development of roll waves in power-law fluids with non-uniform initial conditions.Journal of Hydraulic Research 54(3):289-306.https://doi.org/10.1080/00221686.2016.1140684
    Canelli L,Ferrero AM,Migliazza M,et al.(2012)Debris flow risk mitigation by means of rigid and flexible barriers-experimental tests and impact analysis.Natural Hazard and Earth System Science 12:1693-1699.https://doi.org/10.5194/nhess-12-1693-2012
    Carotenuto C,Merola MC,?lvarez-Romero M,et al.(2015)Rheology of natural slurries involved in a rapid mudflow with different soil organic carbon content.Colloids and Surfaces A 466:57-65.https://doi.org/10.1016/j.colsurfa.2014.10.037
    Chanson H,Jarny S,Coussot P(2006)Dam Break Wave of Thixotropic Fluid.Journal of Hydraulic Engineering 132(3):280-293.https://doi.org/10.1061/(asce)0733-9429(2006)132:3(280)
    Chiou MC,Wang Y,Hutter K(2005)Influence of obstacles on rapid granular flows.Acta Mechanica 175:195-122.https://doi.org/10.1007/s00707-004-0208-9
    Coussot P(1994)Steady,laminar,flow of concentrated mud suspensions in open channel.Journal of Hydraulic Research 32(4):535-559.https://doi.org/10.1080/00221686.1994.9728354
    Cui P,Gray JMNT(2013)Gravity driven granular free-surace flow around a circular cylinder.Journal of Fluid Mechanics 720:314-337.https://doi.org/10.1017/jfm.2013.42
    Cui P,Hu K,Zhuang J,et al.(2011)Prediction of debris-flow area by combining hydrological and inundation simulation methods.Journal of Mountain Science 8:1-9.https://doi.org/10.1007/s11629-011-2040-8
    Cui P,Chao Z,Lei Y(2015)Experimental analysis on the impact force of viscous debris flow.Earth Surface Process and Landforms40:1644-1655.https://doi.org/10.1001/esp.3744
    Dent JD,Lang TE(1983)A biviscous modified Bingham model of snow avalanche motion.Annals Glaciology 4:42-46.https://doi.org/10.3189/S0260305500005218
    Di Cristo C,Iervolino M,Vacca A(2006)Linear stability analysis of a 1-D model with dynamical description of bed load transport.Journal of Hydraulic Research 44:480-487.https://doi.org/10.1080/00221686.2006.9521699
    Di Cristo C,Iervolino M,Vacca A(2013)Gravity-driven flow of a shear-thinning power-law fluid over a permeable plane.Applied Mathematical Sciences 7(33-36):1623-1641.https://doi.org/10.12988/ams.2013.13150
    Di Cristo C,Iervolino M,Vacca A(2014)Simplified wave models applicability to shallow mud flows modeled as power-law fluids.Journal of Mountain Sciences 19:956-965.https://doi.org/10.1007/s11629-014-3065-6
    Di Cristo C,Greco M,Iervolino M,Leopardi A,Vacca A(2016)Twodimensional two-phase depth-integrated model for transients over mobile bed.Journal of Hydraulic Engineering 142(2),04015043.https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001024
    Di Cristo C,Iervolino M,Vacca A(2018a)Applicability of kinematic and diffusive models for mud flows:a steady state analysis.Journal of Hydrology 559:585-595.https://doi.org/10.1016/j.jhydrol.2018.02.016
    Di Cristo C,Evangelista S,Iervolino M,et al.(2018b)Dam-break waves over an erodible embankment:experiments and simulations Journal of Hydraulic Research 56(2):196-210.https://doi.org/10.1080/00221686.2017.1313322
    Dressler RF(1952)Hydraulic resistance effect upon the dam-break functions.Journal of Research of the National Bureau Standards49(3):217-225.
    Evangelista S,Greco M,Iervolino M,et al.(2015)A new algorithm for bank-failure mechanisms in 2D morphodynamic models with unstructured grids.International Journal of Sediment Research30(4):382-391.https://doi.org/10.1016/j.ijsrc.2014.11.003
    Faug T(2015)Depth-average analytical solution for free-surface granular flow impacting rigid walls down inclines.Physical Review E 92(6).https://doi.org/10.1103/PhysRevE.9292.062310
    Fernandez-Nieto ED,Bouchut F,Bresch D,et al.(2008)A new Savage-Hutter type model for submarine avalanches and generated tsunami.Journal of Computational Physic 227(16):7720-7754.https://doi.org/10.1016/j.jcp.2008.04.039
    Fernández-Nieto ED,Noble P,Vila JP(2010)Shallow water equations for non-Newtonian fluids.Journal of Non-Newtonian Fluid Mechanics 165(13-14):712-732.https://doi.org/10.1016/j.jnnfm.2010.03.008
    Gao L,Zhang LM,Chen HX(2017)Two dimensional simulation of debris flow impact pressure on buildings.Engineering Geology226:236-244.https://doi.org/10.1016/j.enggeo.2017.06.012
    Gavrilov AA,Rudyak VY(2016)Reynolds-averaged modeling of turbulent flows of power-law fluids.Journal of Non-Newtonian Fluid Mechanics 227:45-55.https://doi.org/10.1016/j.jnnfm.2015.11.006
    Gavrilov AA,Rudyak VY(2017)Direct numerical simulation of the turbulent energy balance and the shear stresses in power-law fluid flows in pipes.Fluid Dynamics 52(3):363-374.https://doi.org/10.1134/S0015462817030048
    Gori F,Boghi A(2011)Two new differential equations of turbulent dissipation rate and apparent viscosity for non-newtonian fluids.International Communications in Heat and Mass Transfer 38(6):696-703.https://doi.org/10.1016/j.icheatmasstransfer.2011.03.003
    Gori F,Boghi A(2012)A three dimensional exact equation for the turbulent dissipation rate of Generalised Newtonian Fluids.International Communications in Heat and Mass Transfer 39(4):477-485.https://doi.org/10.1016/j.icheatmasstransfer.2012.02.010
    Greco M,Iervolino M,Leopardi A,et al.(2012a)A Two-Phase Model for Fast Geomorphic Shallow Flows.International Journal of Sediment Research 27(4):409-425.https://doi.org/10.1016/S1001-6279(13)60001-3
    Greco M,Iervolino M,Vacca A,et al.(2012b)Two-phase modelling of total sediment load in fast geomorphic transients.River Flow2012,Proc.,Int.Conf.on Fluvial Hydraulics,1,Colegio de Ingenieros Civiles de Costa Rica(CiC):643-648.
    Greco M,Iervolino M,Vacca A(2018)Analysis of bedform instability with 1-D two-phase morphodynamical models.Advances in Water Resources 120:50-64.https://doi.org/10.1016/j.advwatres.2017.07.002
    Harten A,Lax PD,van Leer B(1983)On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.SIAMReview 25(1):35-61.https://doi.org/10.1137/1025002
    He S,Liu W,Ouyang C,et al.(2014)A two-phase model for numerical simulation of debris flow.Natural Hazard and Earth System Science 2:2151-2183.https://doi.org/10.5194/nhessd-2-2151-2014
    Hewitt DR,Balmforth NJ(2013)Thixotropic gravity currents.Journal of Fluid Mechanics 727:56-82.https://doi.org/10.1017/jfm.2013.235
    Hubl J,Steinwendtner H(2001)Two-dimensional simulation of two viscous debris flows in Austria.Physics and Chemistry of the Earth-Part C 26(9):639-644.https://doi.org/10.1016/S1464-1917(01)00061-7
    Huang X,Garcia MH(1998)A Herschel-Bulkley model for mud flow down a slope.Journal of Fluid Mechanics 374:305-333.https://doi.org/10.1017/S0022112098002845
    Hung O,Morgan GC,Kelerhals R(1984)Quantitative analysis of debris torrent hazard for design of remedial measures.Canadian Geothecnical Journal 21:663-677.https://doi.org/10.1139/t84-073
    Hutter C,Svendsen B,Rickenmann D(1996)Debris flow modelling:A review,Continuum Mechanics and Thermodynamics 8(1):1-35.https://doi.org/10.1007/BF01175749
    Hwang CC,Chen JL,Wang JS,et al.(1994)Linear stability of power law liquid film flowing down an inclined plane.Journal of Physics D:Applied Physics 27:2297-2301.https://doi.org/10.1088/0022-3727/27/11/008
    Imran J,Harff P,Parker G(2001)A numerical model of submarine debris flows with graphical user interface.Computers&Geosciences 27(6):717-729.https://doi.org/10.1016/S0098-3004(00)00124-2
    Iervolino M,Carotenuto C,Gisonni C,et al.(2017)Impact Forces of a Supercritical Flow of a Shear Thinning Slurry Against an Obstacle.In:Miko?M,Casagli N,Yin Y,et al.(eds),Advancing Culture of Living with Landslides.WLF 2017.Springer,https://doi.org/10.1007/978-3-319-53485-5_46
    Iverson RM(1997)The physics of debris flows.Review of Geophysics 35(3):245-296.https://doi.org/10.1029/97RG00426
    Iverson RM,Denlinger RP(2001)Flow of variably fluidized granular masses across three-dimensional terrain:1.Coulomb mixture theory.Journal of Geophysical Research,Solid Earth 106(B1):537-552.https://doi.org/10.1029/2000JB900329
    Iverson RM,George DL(2014)A depth-averaged debris-flow model that includes the effect of evolving dilatancy.I Physical basis.Proceeding of Royal Society A Mathematical Physical and Engineering Sciences 470:1-31.https://doi.org/10.1098/rspa.2013.0819
    Jóhannesson T,Gauer P,Issler P,et al.(2009)The design of avalanche protection dams-Recent practical and theoretical developments.Project Report EUR23339.Climate Change and Natural Hazard Research Area.Series2.European Commission(Available online at:https://hal.archives-ouvertes.fr/hal-00575782/)
    Kattel P,Kafle J,Fischer JT,et al.(2018)Interaction of two-phase debris with obstacles.Engineering Geology 242:197-217.https://doi.org/10.1016/j.enggeo.2018.05.023
    Kolesnichenko O,Shiriaev AS(2002)Partial stabilization of underactuated Euler-Lagrange systems via a class of feedback transformations.Systems&Control Letters 45(2):121-132.https://doi.org/10.1016/S0167-6911(01)00170-0
    Laigle D,Labbe M(2017)SPH-based numerical study of the impact of mudflows on obstacles.International Journal of Erosion Control Engineering 10(1):56-65.https://doi.org/10.1007/s10596-007-9053-y
    Leopardi A,Oliveri E,Greco M(2002)Two-dimensional modeling of flood to map risk prone areas.Journal of Water Resources Planning and Management 128(3):168-178.https://doi.org/10.1061/(ASCE)0733-9496(2002)128:3(168)
    Li J,Cao ZX,Hu KH,et al.(2018a)A depth-averaged two-phase model for debris flows over fixed beds.International Journal of Sediment Research 33(4):462-477.https://doi.org/10.1016/j.ijsrc.2017.06.003
    Li J,Cao ZX,Hu KH,et al.(2018b)A depth-averaged two-phase model for debris flows over erodible beds.Earth Surface Processes and Landform 43(4):817-839.https://doi.org/10.1002/esp.4283
    Liu KF,Mei CC(1989).Slow spreading of a sheet of Bingham fluid on an inclined plane.Journal of Fluid Mechanics 207:505-529.https://doi.org/10.1017/S0022112089002685
    Longo S,Di Federico V,Chiapponi L(2015)Non-Newtonian powerlaw gravity currents propagating in confining boundaries.Environmental Fluid Mechanics 15:515.https://doi.org/10.1007/s10652-014-9369-9
    Meng X,Wang Y(2016)Modelling and numerical simulation of twophase debris flows.Acta Geotechnica 11:1027-1045.https://doi.org/10.1007/s11440-015-0418-4
    Mizuyama T(2008)Structural Countermeasures for debris flow disaster.International Journal of Erosion Control Engineering1(2):38-43.https://dx.doi.org/10.13101/ijece.1.38
    Morabito F,Teel AR,Zaccarian L(2004)Nonlinear anti-wind-up applied to Euler-Lagrange systems.IEEE Transactions on Robotics and Automation 20(3):526-537.https://dx.doi.org/10.1109/TRA.2004.824933
    Ng C,Mei CC(1994)Roll waves on a shallow layer of mud modeled as a power-law fluid.Journal of Fluid Mechanics 263:151-184.https://doi.org/10.1017/S0022112094004064
    Ng CWW,Choi CE,Song D,et al.(2015)Physical modelling of baffled influence on landslide debris mobility.Landslide 12(1):1-18.https://doi.org/10.1007/s10346-014-0476-y
    Noble P,Vila JP(2013)Thin power-law film flow down an inclined plane:consistent shallow-water models and stability under largescale perturbations.Journal of Fluid Mechanics 735:29-60.https://doi.org/10.1017/jfm.2013.454
    O’Brien JS,Julien PY,Fullerton WT(1993)Two-dimensional water flood and mudflow simulation.Journal of Hydraulic Engineering119(2):244-261.https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
    Pelati M,Bouchut F,Mangeney A(2008)A Roe-type scheme for two-phase shallow granular flows over variable topography.ESAIM Mathematical Modelling and Numerical Analysis,42:851-885.https://doi.org/10.1051/m2an:2008029
    Perazzo CA,Gratton J(2004)Steady and traveling flows of a power-law liquid over an incline.Journal of Non-Newtonian Fluid Mechanics 118:57-64.https://doi.org/10.1016/j.jnnfm.2004.02.003
    Pitman EB,Le L(2005)A two-fluid model for avalanche and debris flows.Philosophical Transactions of the Royal Society A.Mathematical Physical and Engineering Sciences 363:1573-1601.https://doi.org/10.1098/rsta.2005.1596
    Pudasaini SP,Wang Y,Hutter K(2005)Modelling debris flows down general channels.Natural Hazard and Earth System Science5(6):799-819.https://doi.org/10.5194/nhess-5-799-2005
    Pudasaini SP(2012)A general two-phase debris flow model.Journal of Geophysical Research 117 F03010.https://doi.org/10.1029/2011JF002186
    Rudman M,Blackburn HM,Graham LJW,et al.(2004)Turbulent pipe flow of shear-thinning fluids.Journal of Non-newtonian Fluid Mechanics 118(1):33-48.https://doi.org/10.1016/j.jnnfm.2004.02.006
    Rudman M,Blackburn HM(2006)Direct numerical simulation of turbulent non-Newtonian flow using a spectral element method.Applied Mathematical Modelling 30(11):1229-1248.https://doi.org/10.1016/j.apm.2006.03.005
    Sharma R,May J,Alobaid F,et al.(2017)Euler-Euler CFDsimulation of the fuel reactor of a 1 MWth chemical-looping pilot plant:Influence of the drag models and specularity coefficient.Fuel 200:435-446.https://doi.org/10.1016/j.fuel.2017.03.076
    Scheidl C,Chiari M,Kaitna R,et al.(2013)Analysing debris-flow impact model,based on small scale modelling approach.Survey of Geophysics 34(1):121-140.https://doi.org/10.1007/s10712-012-9199-6
    Shige-eda M,Akiyama J(2003)Numerical and experimental study on two-dimensional flood flows with and without structures.Journal of Hydraulic Engineering 129(10):817-821.https://doi.org/10.1061/(ASCE)0733-9429(2003)129:10(817)
    Soares-Fraz?o S,Canelas R,Cao Z,et al.(2012)Dam-break flows over mobile beds:experiments and benchmark tests for numerical models.Journal of Hydraulic Research 50(4):364-375.https://doi.org/10.1080/00221686.2012.689682
    Sonder I,Zimanowski B,Buttner R(2006)Non-Newtonian viscosity of basaltic magma.Geophysical Research Letter 33:L02303.https://dx.doi.org/10.1029/2005GL024240
    Sovilla B,Faug T,Kohler A,et al.(2016)Gravitational wet avalanche pressure on pylon-like structures.Cold Regions Science and Technology 126:66-75.https://doi.org/10.1016/j.coldregions.2016.03.002
    Tai YC,Gray JMN,Hutter C,et al.(2001)Flow dense avalanches past obstructions.Annals of Glaciology 32:281-284https://doi.org/10.3189/172756401781819166
    Takahashi T(2007)Debris Flow:Mechanics,Prediction and Countermeasures.Taylor and Francis,New York,USA.
    Teufelsbauer H,Wang Y,Chou C,et al.(2009)Flow obstacleinteraction in rapid granular avalanches:DEM simulation and comparison with experiments.Granular Matter 11(4):209-220.https://doi.org/10.1007/s10035-009-0142-6
    Tiberghien D,Laigle D,Naaim M,et al.(2007)Experimental investigation of interaction between mudflow and on obstacle.Proceeding of the International Conference on Debris-Flow Hazard Mitigation:Mechanics,Prediction and Assessment,Chengdu.China.pp 281-292.
    Turnbull B,Bowman ET,McElwaine JN(2015)Debris flows:experiments and modelling.Comptes Rendus Physique 16(1):86-96.
    Vagon F,Segalini A(2016)Debris flow impact estimation on a rigid barrier.Natural Hazard and Earth System Science 16:1691-1697.https://doi.org/10.5194/nhess-16-1691-2016
    Wang Y,Williams KC,Jones MG,et al.(2010)CFD simulation of gas-solid flow in dense phase bypass pneumatic conveying using the Euler-Euler model.Applied Mechanics and Materials 26-28:1190-1194.https://doi.org/10.4028/www.scientific.net/AMM.26-28.1190
    Wang F,Chen X,Chen J,et al.(2017)Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles.Engineering Geology 220:43-51.https://doi.org/10.1016/j.enggeo.2017.01.014
    Wu W,Wang SS-Y(2007)One dimensional modeling of dam-break flow over movable beds.Journal of Hydraulic Engineering 133(1):48-58.https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(48)
    Xia CC,Li J,Cao ZX,et al.(2018)A quasi single-phase model for debris flows and its comparison with a two-phase model.Journal of Mountain Science 15(5):1071-1089.https://doi.org/10.1007/s11629-018-4886-5
    Zhang X,Bai Y,Ng CO(2010)Rheological Properties of Some Marine Muds Dredged from China Coasts.Proceedings of the 28International Offshore and Polar Engineering Conference,Beijing,China.pp 455-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700