用户名: 密码: 验证码:
新型弹簧床结构的HAN基发动机技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:HAN-Based Thruster Technology with a New Spring Bed Structure
  • 作者:姚天亮 ; 郭曼丽 ; 戴佳 ; 林庆国
  • 英文作者:YAO Tian-liang;GUO Man-li;DAI Jia;LIN Qing-guo;Shanghai Institute of Space Propulsion;Shanghai Engineering Research Center of Space Engine;
  • 关键词:HAN基发动机 ; 弹簧床 ; 温启动 ; 长寿命
  • 英文关键词:HAN-based thruster;;Spring-bed;;Hot starting;;Long life
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:上海空间推进研究所;上海空间发动机工程技术研究中心;
  • 出版日期:2019-04-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:国家国防科技工业局民用航天技术预先研究项目(D010507);; 上海市科学技术委员会(17DZ2280800)
  • 语种:中文;
  • 页:YHXB201904010
  • 页数:8
  • CN:04
  • ISSN:11-2053/V
  • 分类号:80-87
摘要
为改善硝酸羟胺(HAN)基发动机催化剂在长时间工作的工况下容易发生破碎而产生空穴的现象,本文提出一种新型弹簧床结构发动机设计方法,对发动机催化床进行改进优化设计。该设计可实现,常温环境下弹簧所提供的最大弹力不足以压碎催化剂;同时在高温环境下,弹簧的最小弹力足以克服催化床受到的流动阻力,可大幅提高发动机工作寿命、性能和可靠性。为验证该设计方法的有效性,分别开展了传统结构和新型弹簧床结构的HAN基1N发动机温启动试验。试验结果表明:在相同试验条件下,传统结构1N发动机温启动次数不超过150次,而使用新型弹簧床结构的1N发动机温启动次数超过了500次,且工作性能更优。试验结果证明了该设计方法的有效性,为HAN基发动机长寿命可靠工作奠定了良好的技术基础。
        The catalyzer of the HAN-based thruster is prone to breakage in the long-time working conditions. A new design method of the thruster with a spring bed structure is proposed in this paper, which optimizes the structure of the thruster catalytic bed. The elastic force provided by the spring in the high temperature environment is sufficient to resist the flow friction generated by the catalytic bed. Meanwhile, the minimum elastic force is sufficient to overcome the flow resistance of the catalytic bed. All these advantages improve the longevity and reliability of the thruster. In order to verify the validity of the proposed design method, the hot-starting tests of both the traditional structure and the new spring bed structure designed for the 1 N HAN thruster are carried out. The results demonstrate that the hot-starting times of the 1 N thruster with the new spring bed structure exceed 500, compared to less than 150 cycles of 1 N thruster with the traditional structure. The studies provide a prospect foundation for the design of the HAN-based thruster.
引文
[1] William M M,Matthew C D.Recommended figures of merit for green monopropellants[C].The 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,San Jose,CA,July 14-17,2013.
    [2] George P S,Oscar B.火箭发动机基础[M].洪鑫,张宝炯,译.北京:科学出版社,2003.
    [3] Bruno C,Accettura,A G.先进的推进系统与技术:从现在到2020年[M].侯晓,等译.北京:中国宇航出版社,2012.
    [4] 王枫,李龙飞,张贵田.液氧煤油补燃发动机喷注器高频燃烧不稳定性的试验研究[J].宇航学报,2012,33(2):260-264.[Wang Feng,Li Long-fei,Zhang Gui-tian.Experimental study on high frequency combustion instability with coaxial injector of staged combustion LOX/kerosene rocket engine[J].Journal of Astronautics,2012,33(2):260-264.]
    [5] 李文龙,李平,邹宇.烃类推进剂航天动力技术进展与展望未来[J].宇航学报,2015,36(3):243-252.[Li Wen-long,Li Ping,Zou Yu.Review and future trend of space propulsion technique using hydrocarbon propellants[J].Journal of Astronautics,2015,36(3):243-252.]
    [6] Robert L S,Robert K M.Green propulsion advancement:Challenging the maturity of monopropellant hydrazine[J].Journal of Propulsion and Power,2014,30(2):265-276.
    [7] Shinji I,Yoshiki M.Development status of a hydrazine alternative and low cost thruster using HAN/HN-based green propellant[C].The 2017 AIAA Propulsion and Energy Forum,Atlanta,USA,July 10-12,2017.
    [8] Christopher H M,William D D,John J,et al.Green propellant infusion mission program development and technology maturation[C].The 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,Cleveland,USA,July 28-30,2014.
    [9] Robert S J.HAN-based monopropellant assessment for spacecraft[C].The 32nd Joint Propulsion Conference and Exhibit,Orlando,USA,July 1-3,1996.
    [10] Masse R K,Overly J A,Allen M Y,et al.A new state-of-the-Art in AF-M315E thruster technologies[C].The 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,Atlanta,USA,July 30-August 01,2012.
    [11] Michael T,Charlie F,Jurg Z.System-level demonstration of busek’s 1U CubeSat green propulsion module[C].The 53rd AIAA/SAE/ASEE Joint Propulsion Conference,Atlanta,USA,July 10-12,2017.
    [12] Nobuhiko T,Tetsuya M,Katsumi F,et al.The “Greening” of spacecraft reaction control systems [R].Mitsubishi Heavy Industries Technical Review,2011.
    [13] Daijiro S,Hikaru U,Katsumi F.Development of 1N green ptopellant thruster in MHI(Mitsubishi Heavy Industries,Ltd.)[C].Space Propulsion Conference 2018,Seville,Spain,May 14-18,2018.
    [14] Han H C,Liu J,Lin Q G,et al.Investigation on HAN engines for space propulsion[C].The 5th International Space Propulsion Conference,Roma,Italy,May 02-06,2016.
    [15] Liu J,Liu C,Qiu X,et al.Towards satellite propulsion with HAN-Based green monopropellants[C].The 5th International Space Propulsion Conference,Roma,Italy,May 02-06,2016
    [16] Guo M L,Yao T L,Lin Q G.Experimental studies of the 150N HAN-based monopropellant attitude control thruster[C].The 69th International Astronautical Congress,Bremen,Germany,October 01-05,2018.
    [17] 於希乔.HAN基单元发动机流动与传热性研究[D].上海:上海航天技术研究院,2018.[Yu Xi-qiao.Research on fluid dynamics and heat transfer of HAN-based monopropellant thruster[D].Shanghai:Shanghai Academy of Spaceflight Technology,2018.]
    [18] Mc Lean,C,Spores,R,Sheehy J.Green propulsion infusion mission,program contruct,and mission objectives[C].Commercial and Government Responsive Access to Space Technology Exchange (CRASTE) Conference,Bellevue,USA,June 24-27,2013.
    [19] Ronald A S,Robert M,Scott K,et al.GPIM AF-M315E propulsion system[C].The 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,San Jose,CA,July 14-17,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700