用户名: 密码: 验证码:
基于矩形开口谐振环的低频天线阻抗变换器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Band-Notch Impedance Transformer Based on Split Rectangular Loop in Low Frequency
  • 作者:唐尧 ; 曹祥玉 ; 高军
  • 英文作者:TANG Yao;CAO Xiangyu;GAO Jun;Information and Navigation College, Air Force Engineering University;
  • 关键词:阻抗变换器 ; 矩形开口环 ; 陷波特性 ; 低频
  • 英文关键词:impedance transformer;;split rectangular loop;;band-notch function;;low frequency
  • 中文刊名:KJGC
  • 英文刊名:Journal of Air Force Engineering University(Natural Science Edition)
  • 机构:空军工程大学信息与导航学院;
  • 出版日期:2019-02-25
  • 出版单位:空军工程大学学报(自然科学版)
  • 年:2019
  • 期:v.20;No.114
  • 基金:国家自然科学基金(61271100;61471389;61501494;61671464)
  • 语种:中文;
  • 页:KJGC201901014
  • 页数:6
  • CN:01
  • ISSN:61-1338/N
  • 分类号:88-93
摘要
设计了一种低频波段使用的新型阻抗变换器,该阻抗变换器在0.1~3 GHz频率范围内实现由输入150Ω到输出50Ω的阻抗匹配。矩形开口环结构具有良好的谐振特性,通过在阻抗变换器底部开矩形开口环的方法实现单一频点的陷波特性。新型阻抗变换器其原理是基于巴伦阻抗变换器的阻抗转换特性和矩形开口环结构的谐振特性,仿真结果显示新型阻抗变换器在1.1 GHz频点与2.2 GHz频点的S_(12)参数均在-15 dBi以下,S_(11)参数均在-0.5 dBi以上。经过仿真验证,随着矩形开口环结构长度与位置的变化,可以实现陷波频点在0.1~3 GHz频率范围内自主调控。文中采用HFSS软件进行仿真优化,绘出S参数图,实物测试结果验证了设计结构的有效性。陷波阻抗变换器作为天线匹配终端,在射频信号采集、超宽带天线及阵列阻抗匹配等领域有很好的军事应用前景。
        This paper designs a novel impedance transformer used for low frequency, performing 150 Ω at the input to 50 Ω at the output within the range of 0.1 GHz to 3 GHz. The novel impedance transformer is characterized by band-notch function through loading the technology of curving split rectangular loop with good resonance. The principle is based on the impedance transmission characteristics of Balun impedance transformer and the resonance characteristics of split rectangular loop. The results indicate that the S_(12) parameters are below minus 15 dBi and the S_(11) parameters are above minus 0.5 dBi.And the band-notch frequency point can be controlled by changing the length and location of the split rectangular loop. The HFSS software is utilized for modeling and optimizing parameters. The results of S parameters and fabricated sample measurements indicate that the design is reasonable. Taking band-notch impedance transformer as the antennas matching terminal, there is a good prospect in application in the fields of radiation frequency harvest and the matching of extremely wideband antenna arrays.
引文
[1] 吴万春,梁昌洪. 微波网络及其应用 [M]. 北京:国防工业出版社, 1980. WU W C, LIANG C H. Microwave Network and Its Application[M]. Beijing: National Defense Industry Press, 1980.(in Chinese)
    [2] KLOPFENSTEIN R W A. A Transmission Line Taper of Improved Design [J]. Proceedings of the IEEE, 1956, 44:31-35.
    [3] MONZON C. A Small Dual-Frequency Transformer in Two Sections [J]. IEEE Transactions Microwave Theory Technology, 2003, 51:1157-1161.
    [4] MOON B T, MYUNG N H. A Dual-Band Impedance Transforming Technique with Lumped Elements for Frequency-Dependent Complex Loads [J]. Progress in Electromagnetics Research, 2013, 136:123-139.
    [5] WU Y, LIU Y, LI S. A Dual-Frequency Transformer for Complex Impedances with Two Unequal Sections [J]. IEEE Microwave Wireless Components Letters, 2009, 19:77-79.
    [6] WU Y, SUN W. A Novel Compact Dual-Frequency Coupled-Line Transformer with Simple Analytical Design Equations for Frequency-Dependent Complex Load Impedance [J]. Progress in Electromagnetics Research, 2013, 134:47-62.
    [7] LIU X. A Three-Section Dual-Band Transformer for Frequency-Dependent Complex Load Impedance [J]. IEEE Microwave and Wireless Components Letters, 2009, 19:611-613.
    [8] NIKRAVAN M, ATLASBAF Z. T-Section Dual-Band Impedance Transformer for Frequency-Dependent Complex Impedance Loads [J]. Electronics Letters, 2011, 47:551-553.
    [9] MANOOCHEHRI O. π Model Dual-Band Impedance Transformer for Unequal Complex Impedance Loads [J]. IEEE Microwave and Wireless Components Letters, 2015, 25:238-240.
    [10] ZHENG X, LIU Y. A Dual-Band Impedance Transformer Using Pi-Section Structure for Frequency-Dependent Complex Loads [J]. Progress in Electromagnetics Research, 2012, 32:11-26.
    [11] WU Y, LIU Y, LI S. A Generalized Dual-Frequency Transformer for Two Arbitrary Complex Frequency-Dependent Impedances [J]. IEEE Microwave Wireless Components Letters, 2009, 19:792-794.
    [12] CHOI H, LIM J. A New Design of Doherty Amplifiers Using Defected Ground Structure [J]. IEEE Microwave and Wireless Components Letters, 2006, 16:687-689.
    [13] NGUYEN H, ANG K. Design of Coupled Three-Line Impedance Transformers [J]. IEEE Microwave and Wireless Components Letters, 2014, 24:84-86.
    [14] AHN H, ITOH T. Impedance-Transforming Symmetric and Asymmetric DC Blocks [J]. IEEE Transactions Microwave Theory Technology, 2010, 58:2463-2474.
    [15] KIM P, CHAUDHARY G. Wideband Impedance Transformer with Out-of-Band Suppression Characteristics [J]. Microwave Optical Technology Letters, 2014, 56:2612-2616.
    [16] CRISTAL E G, FRANKEL S. Hairpin-Line and Hybrid Hairpin-Lin/Half Wave Parallel-Coupled-Line Filters [J]. IEEE Transactions Microwave Theory Technology, 1972, 20:719-728.
    [17] CHUANG M L. Analytical Design of Dual-band Impedance Transformer with Additional Transmission Zero [J]. IET Microwaves Antennas Propagation, 2014, 8:1120-1126.
    [18] RAWAT K, GHANNOUCHI F M. Dual-Band Matching Technique Based on Dual-Characteristic Impedance Transformers for Dual-band Power Amplifiers Design [J]. IET Microwaves Antennas Propagation, 2011, 5:1720-1729.
    [19] CASTALDI G, FIUMARA V. A Dual-Band Chebyshev Impedance Transformer [J]. Microwave Optical Technology, 2003, 39:1620-1627.
    [20] BAH A O. An Extremely Wideband Tapered Balun for Application in Tightly Coupled Arrays [J]. IEEE Transactions on Antennas and Propagation, 2016, 5:12-17.
    [21] 范寿康,李进,胡容. 微波技术、微波电路及天线 [M]. 北京:机械工业出版社, 2008. FAN S K, LI J, HU R. Microwave Technology, Microwave Circuits and Antenna[M]. Beijing: China Machine Press, 2008.(in Chinese)
    [22] 闫润卿. 微波技术基本教程 [M]. 北京:电子工业出版社, 2011. YAN R Q. Basic Tutorial of Microwave Technology[M]. Beijing: Publishing House of Electronics Industry, 2011.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700