用户名: 密码: 验证码:
Utilizing vector hydrophones to achieve an active anechoic terminal in an acoustic tube
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Utilizing vector hydrophones to achieve an active anechoic terminal in an acoustic tube
  • 作者:WANG ; Xiaolin ; LIU ; Bilong ; YANG ; Jun ; LIU ; Jingwei ; WANG ; Ran
  • 英文作者:WANG Xiaolin;LIU Bilong;YANG Jun;LIU Jingwei;WANG Ran;Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Mechanical Engineering,Qingdao University of Technology;
  • 中文刊名:SXXW
  • 英文刊名:声学学报(英文版)
  • 机构:Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Mechanical Engineering,Qingdao University of Technology;
  • 出版日期:2019-04-22
  • 出版单位:Chinese Journal of Acoustics
  • 年:2019
  • 期:v.38
  • 基金:supported by the National Key Research and Development Program of China(2016YFB1200503);; the National major project(613247);; the National Natural Science Foundation of China(11404368,11474307)
  • 语种:英文;
  • 页:SXXW201902007
  • 页数:14
  • CN:02
  • ISSN:11-2066/O3
  • 分类号:91-104
摘要
A new integrated active sound absorptive terminal using vector hydrophones is developed for the anechoic terminal of impedance tube,with which the reflected and the incident waves can be separated.The method overcomes the limitations imposed by the sensor spacing and measuring frequency range in the traditional two-hydrophone method,and can effectively expand low-frequency sound absorption band of the terminal.The effect of hydrophone sensitivity on the sound absorptive performance of the terminal is evaluated,a correction method is also provided for the reflection and transmission coefficient.The experimental results show that the absorption coefficient in the frequency band of 0.1-2 kHz is over 0.98,which agrees well with the theoretical results.
        A new integrated active sound absorptive terminal using vector hydrophones is developed for the anechoic terminal of impedance tube,with which the reflected and the incident waves can be separated.The method overcomes the limitations imposed by the sensor spacing and measuring frequency range in the traditional two-hydrophone method,and can effectively expand low-frequency sound absorption band of the terminal.The effect of hydrophone sensitivity on the sound absorptive performance of the terminal is evaluated,a correction method is also provided for the reflection and transmission coefficient.The experimental results show that the absorption coefficient in the frequency band of 0.1-2 kHz is over 0.98,which agrees well with the theoretical results.
引文
[1] Chung J Y,Blaser D A.Transfer function method of measuring in-duct acoustic properties,I:Theory.J.Acoust.Soc.Am.,1980;68(3):907-913
    [2] Chung J Y,Blaser D A.Transfer function method of measuring in-duct acoustic properties,II:Experiment.J.Acoust.Soc.Am.,1980;68(3):914-921
    [3] Seybert A F,Ross D F.Experimental determination of acoustic properties using a two-microphone random-excitation technique.J.Acoust.Soc.Am.,1977;61(5):1362-1370
    [4] Tao Z,Seybert A F.A review of current techniques for measuring muffler transmission loss.SAE Technical Paper,2003-01-1653
    [5] Song B H,Bolton J S.A transfer matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials.J.Acoust.Soc.Am.,2000;107(3):1131-1152
    [6] Lung T Y,Doige A G.A time-averaging transient testing method for acoustic properties of piping systems and mufflers.J.Acoust.Soc.Am.,1983;73(3):867-876
    [7] Munjal M L,Doige A G.Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element.J.Sound Vib.,1990;141(2):323-333
    [8] Olivieri O,Bolton J S,Yoo T.Measurement of transmission loss of materials using a standing wave tube.Proc.Inter-Noise,Honolulu,HI,USA,2006
    [9] Piquette J C,Forsythe S E.Low-frequency echo-reduction and insertion-loss measurements from small passive-material samples under ocean environmental temperatures and hydrostatic pressures.J.Acoust.Soc.Am.,2001;110(4):106-110
    [10] Sun L,Hou H.Measurement of sound absorption by underwater acoustic material using pulseseparation method.Appl.Acoust.,2014;85(11):106-110
    [11] Dai Y,Yang J H,Hou H et al.The absorption coefficient measurement of underwater materials in a water tube by using the wide-band pulse method.Chinese Journal of Acoustics,2017;36(2):180-194
    [12] ASTM E1050-08.Standard test method for impedance and absorption of acoustical materials using a tube,two microphones and a digital frequency analysis system.ASTM International,West Conshohocken,PA,2008:1-11
    [13] ASTM E2611-09.Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method.ASTM International,West Conshohocken,PA,2009:1-14
    [14] ASTM E1050-12.Standard test method for impedance and absorption of acoustical materials using a tube,two microphones and a digital frequency analysis system.ASTM International,West Conshohocken,PA,2012:1-12
    [15] ASTM E2611-17.Standard test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method.ASTM International,West Conshohocken,PA,2017:1-14
    [16] Kunio J,Yoo T,Bolton S et al.A comparison of two and four microphone standing wave tube procedures for estimating the normal incidence absorption coefficient.Proc.Inter-Noise,Ottawa,Canada,2009
    [17] Salissou Y,Panneton R,Doutres O.Three-microphone two-cavity method for measuring sound transmission loss in a modified impedance tube.Can.Acoust.,2011;39(3):16-17
    [18] Salissou Y,Panneton R,Doutres O.Complement to standard method for measuring normal incidence sound transmission loss with three microphones.J.Acoust.Soc.Am.,2012;131(3):EL216-222
    [19] Bao X Q,Varadan V K,Varadan V V.Model of a bilaminar actuator for active acoustic control systems.J.Acoust.Soc.Am.,1990;87(3):1350-1352
    [20] Howarth T R,Varadan V K,Bao X Q et al.Piezocomposite coating for active underwater sound reduction.J.Acoust.Soc.Am.,1992;91(2):823-831
    [21] Howarth T R,Bao X Q,Moser R et al.Digital time delay network for an active underwater acoustic coating.J.Acoust.Soc.Am.,1993;93(3):1613-1619
    [22] Gentry C A,Guigou C,Fuller C R.Smart foam for applications in passive-active noise radiation control.J.Acoust.Soc.Am.,1997;101(4):1771-1778
    [23] Zhu H,Rajamani R,Stelson K A.Active control of acoustic reflection,absorption,and transmission using thin panel speakers.J.Acoustic.Soc.Am.,2003;113(2):852-870
    [24] Li S,Luo M Q,Fan J L et al.Traveling wave tube measurements for low-frequency properties of underwater acoustic materials.Chinese Journal of Acoustics,2007;26(4):301-312
    [25] Li S,Luo M Q.Uncertainty analysis of traveling wave tube measurement method for low-frequency of underwater acoustic materials.Tech.Acoust.(in Chinese),2009;28(4):63-66
    [26] Sun G Q,Li Q H.Progress of study on acoustic vector sensor.Acta Acustica(in Chinese),2004;29(6):481-490
    [27] Sun G Q,Li Q H.Acoustic vector sensor signal processing.Acta Acustica(in Chinese),2004;29(6):491-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700