用户名: 密码: 验证码:
柱体金属化封装FBG传感器的传感特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the sensing characteristics of cylindrical metallic-packaged FBG sensor
  • 作者:戎丹丹 ; 张钰民 ; 宋言明 ; 董明利 ; 祝连庆
  • 英文作者:Rong DANDan;Zhang Yumin;Song Yanming;Dong Mingli;Zhu Lianqing;Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University;
  • 关键词:光纤布拉格光栅 ; 一步超声波焊接 ; 金属化封装 ; 温度响应 ; 重复性
  • 英文关键词:fiber Bragg grating(FBG);;one-step ultrasonic welding;;metallic packaging;;temperature response;;repeatability
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:北京信息科技大学光纤传感与系统北京实验室;
  • 出版日期:2019-01-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:教育部“长江学者与创新团队发展计划”(IRT_16R07);; 高等学校学科创新引智计划(D17021);; 国家自然科学基金重点项目(61735002)资助
  • 语种:中文;
  • 页:YQXB201901015
  • 页数:8
  • CN:01
  • ISSN:11-2179/TH
  • 分类号:120-127
摘要
为解决胶封布拉格光纤光栅(FBG)传感器在飞行器恶劣环境下难以长期存活的问题,提出一种基于一步超声波焊接的金属化方法,实现了FBG的柱体金属化封装。根据热弹性力学建立了温度传感的理论模型,对金属化封装FBG内部产生的热应力进行了分析,研究了封装后FBG的温度传感重复性,并利用扫描电子显微镜(SEM)和能谱分析仪(EDS)对其截面进行形貌观测和元素分析。结果表明,在20~55℃内的各个温度稳定点,金属化封装FBG的输出中心波长漂移标准差仅为2.1 pm,波长重复性好,相关系数为0.999,温度敏感系数为36.38 pm/℃,是裸FBG的3.27倍,与理论分析结果一致。SEM图显示FBG与焊接金属基体结合紧密;EDS定性分析了焊接金属合金主要是由Sn元素组成。因此,采用柱体金属化封装方法能够很好地解决FBG温度传感过程中对轴向应变敏感的问题,具有快速的温度响应特性,在航空航天结构健康监测领域中具有重要的应用价值。
        In order to solve the problem of long-term survival for sealed FBG sensor working in harsh environment of aircraft, a metallic packaging method based on one-step ultrasonic welding was proposed, and the cylinder metallic packaging of the FBG sensor was realized. Based on the thermal elastic mechanics, the theoretical model of temperature sensing was put forward to analyze the thermal stress generated inside the metallic packaged FBG. The repeatability of the temperature sensing of the sealed FBG sensor was also studied. The scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) were used to observe the cross-sectional morphology of metallic packaged FBG sensor and analyze its elements. The results reveal that at the thermally stable points in the range of 20~55℃, the standard deviation of metallic packaged FBG sensor output center wavelength drift is only 2.1 pm, which indicates that the wavelength repeatability is good, and the correlation coefficient is 0.999, the temperature sensitivity coefficient of the metal-packaged FBG is 34.38 pm/°C, which is 3.27 times of that for bare FBG and is consistent with the theoretical analysis result. The SEM image shows that the FBG is bonded with the welding metal substrate tightly. The EDS qualitative analysis shows that the welding metal alloy is mainly composed of element Sn. The proposed cylinder metallic packaging method can solve the problem of sensitiveness to axial strain, has fast temperature response characteristic, and has important application value in the structural health monitoring field of aeronautics and astronautics.
引文
[1] RAY P, RAJAGOPAL P, SRINIVASAN B, et al. Feature-guided wave-based health monitoring of bent plates using fiber Bragg gratings[J]. Journal of Intelligent Material Systems & Structures, 2016, 28(9):1211-1220.
    [2] 耿胜男,冯辉,王星来,等. 航天器智能结构与先进传感技术[J]. 遥测遥控,2017,38(5):44- 48.GENG SH N, FENG H, WANG X L, et al. Smart structures and advanced sensing technologies in space vehicles[J]. Journal of Telemetry, Tracking and Command, 2017,38(5):44- 48.
    [3] DI SANTE R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713.
    [4] 王鹏,张苗苗.碳纤维复合材料受热应变测试方法研究[J]. 国外电子测量技术,2018,37(8):6-10.WANG P, ZHANG M M. Research on thermal strain comparison test of carbon fiber composite materials[J]. Foreign Electronic Measurement Technology, 2018,37(8):6-10.
    [5] 谭晓明,卞贵学,陈跃良,等. 基于光纤Bragg光栅的飞机异种金属连接件腐蚀监测技术研究[J]. 强度与环境,2017,44(2):53- 58.TAN X M, BIAN G X, CHEN Y L, et al. Study on real-time corrosion monitoring of aircraft different metal joint structure based on fiber Bragg grating[J]. Structure & Environment Engineering, 2017,44(2):53- 58.
    [6] 刘铁根,王双,江俊峰,等. 航空航天光纤传感技术研究进展[J]. 仪器仪表学报,2014,35(8):1681-1692.LIU T G, WANG SH, JIANG J F, et al. Advances in optical fiber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientific Instrument, 2014,35(8):1681-1692.
    [7] 张雯,刘小龙,何巍,等. LPFG和FBG级联结构双参数光纤传感器研究[J]. 仪器仪表学报,2017,38(8): 2047- 2054.ZHANG W, LIU X L, HE W, et al. Study on dual-parameter fiber sensor based on LPFG cascaded with FBG structure[J]. Chinese Journal of Scientific Instrument, 2017,38(8):2047- 2054.
    [8] 宋言明,孟凡勇,娄小平,等. 采用FBG正交传感网络的静载识别研究[J].电子测量与仪器学报,2017,31(8): 1227-1232.SONG Y M, MENG F Y, LOU X P, et al. Research on static load identification using FBG orthogonal sensing network [J]. Journal of Electronic Measurement and Instrumentation, 2017,31(8):1227-1232.
    [9] 于秀娟,余有龙,张敏,等. 光纤光栅传感器在航空航天复合材料/结构健康监测中的应用[J]. 激光杂志,2006, 27(1):1-3.YU X J, YU Y L, ZHANG M, et al. Applications of fiber Bragg grating sensor for aerospace composite and structures health monitoring[J]. Laser Journal, 2006, 27(1):1-3.
    [10] 吴俊,陈伟民,章鹏,等. 金属直接连接的布拉格光纤光栅应变测量方法[J]. 仪器仪表学报,2012,33(12): 2709- 2713.WU J, CHEN W M, ZHANG P, et al. Stain sensing method based on directly metallized bonding FBG to substrate[J]. Chinese Journal of Scientific Instrument, 2012,33(12):2709- 2713.
    [11] 王楚虹,陈伟民,傅志芳,等. 光纤光栅自动化金属粘接性能[J]. 光子学报,2016,45(8):69-75.WANG CH H, CHEN W M, FU ZH F, et al. Characteristics of automatic bonded fiber Bragg grating with metal materials[J]. Acta Photonica Sinica, 2016,45(8):69-75.
    [12] 朱月红,文继华,亢俊健,等. 光纤光栅、金属化及传感技术[M]. 北京:国防工业出版社, 2016.ZHU Y H, WEN J H, KANG J J, et al. Fiber Bragg Grating, Metallization and Sensing Technology[M]. Beijing: National Defense Industry Press, 2016.
    [13] LI N, LI Y, HANG X, et al. Analysis and optimization of temperature distribution in carbon fiber reinforced composite materials during microwave curing process[J]. Journal of Materials Processing Technology, 2014, 214(3):544- 550.
    [14] HAVERMANN D, MATHEW J, MACPHERSON W N, et al. Temperature and strain measurements with fiber bragg gratings embedded in stainless steel 316[J]. Journal of Lightwave Technology, 2015, 33(12):2474- 2479.
    [15] DENG F, HUANG Y, AZARMI F, et al. Pitted corrosion detection of thermal sprayed metallic coatings using fiber Bragg grating sensors[J]. Coatings, 2017, 7(3):35.
    [16] ALEMOHAMMAD H, TOYSERKANI E. Metal embedded optical fiber sensors: Laser-based layered manufacturing procedures[J]. Journal of Manufacturing Science and Engineering, 2011, 133(3): 031015.
    [17] MCKEEMAN I, NIEWCAZS P, KHAN S. A comparison of brazed metal and epoxied fiber Bragg grating strain sensors under high strain regimes[C]. Republic of SPIE, 2017, 10323(103233E):1- 4.
    [18] ZHU Z Q, XIAO Q K. Research on the ultrasonic welding of titanium alloy after embedding fiber bragg grating[J]. Sensor, 2018, 1(2):91-102.
    [19] 李玉龙,胡勇涛. 光纤布拉格光栅在焊接监测中的应用[J]. 光学精密工程,2013,21(11):2803- 2812.LI Y L, HU Y T. The application status of the optical fiber Bragg grating in the field of welding monitoring[J]. Optics and Precision Engineering, 2013, 21(11): 2803- 2812.
    [20] GONZALEZ T G, ZORNOZA A, FRAGA S, et al. Laser cladding-based metallic embedding technique for fiber optic sensors[J]. Journal of Lightwave Technology, 2018, 36(4):1018-1025.
    [21] KIM S W, JEONG M S, LEE I, et al. Static mechanical characteristics of tin-coated fiber Bragg grating sensors[J]. Sensors and Actuators A: Physical, 2014, 214(4):156-162.
    [22] ZHANG X X, ALEMOHAMMAD H, TOYSERKANI E. Sensitivity alteration of fiber Bragg grating sensors with additive micro-scale bi-material coatings[J]. Measurement Science and Technology, 2013, 24(2):025106.
    [23] WEN CH J, LI Y L. Effects of metal coating on the fiber Bragg grating temperature sensing characteristics[J]. Journal of Modern Optics, 2016, 63(8):762-770.
    [24] ZHANG Y M, ZHU L Q, LUO F, et al. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding[J]. Optical Engineering, 2016, 55(6):067103
    [25] 戎丹丹,张钰民,宋言明,等. 一步超声法金属化封装FBG的传感特性[J]. 光学精密工程,2018,26(10): 2380- 2388.RONG D D, ZHANG Y M, SONG Y M, et al. One-step ultrasonic method to investigate characteristics of metal-packaged FBG sensors[J]. Optics and Precision Engineering, 2018, 26(10):2380- 2388.
    [26] LI Y L, HUA ZH, YAN F, et al. Metal coating of fiber Bragg grating and the temperature sensing character after metallization[J]. Optical Fiber Technology, 2009, 15(4):391-397.
    [27] 谢剑锋,张华,张国平,等. 封装材料性能对光纤布拉格光栅温度灵敏度影响分析[J]. 光电子激光,2008,19(9): 1158-1162.XIE J F, ZHANG H, ZHANG G P, et al. Analysis on influence of clad materials on temperature sensitivity of fiber Bragg grating[J]. Journal of Optoelectronics Laser, 2008,19(9):1158-1162.
    [28] HJC V, IM M, MP P, et al. Effects of electroplated zinc-nickel alloy coatings on the fatigue strength of AISI4340High-Strength steel[J]. Journal of Materials Engineering and Performance, 2005, 14(2):249- 257,
    [29] 曲道明,孙广开,李红,等. 变形机翼机翼柔性蒙皮形状光纤传感及重构方法[J]. 仪器仪表学报,2018,39(1): 144-151.QU D M, SUN G K, LI H, et al. Optical fiber sensing and reconstruction method for morphing wing flexible skin shape[J]. Chinese Journal of Scientific Instrument, 2018,39(1):1444-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700