用户名: 密码: 验证码:
基于分子间裂分G-四链体-氯化血红素DNA酶自组装纳米线的“Turn-on”型汞离子传感研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:“Turn-on” Sensor for Detection of Mercury Ion through Autonomous Assembly of Intermolecular Splitting G-Quardruplex-Hemin DNAzyme Nanowires
  • 作者:张何 ; 赵智粮 ; 傅昕 ; 王青
  • 英文作者:ZHANG He;ZHAO Zhiliang;FU Xin;WANG Qing;School of Chemistry and Chemical Engineering,Hunan Institute of Engineering;
  • 关键词:汞离子检测 ; 生物传感器 ; 比色分析 ; 分子间裂分G-四链体 ; DNA纳米线 ; DNA
  • 英文关键词:mercury ion detection;;biosensor;;colorimetric assay;;intermolecular splitting G-Quardruplex;;DNA nanowires;;DNAzyme
  • 中文刊名:CGJS
  • 英文刊名:Chinese Journal of Sensors and Actuators
  • 机构:湖南工程学院化学化工学院;
  • 出版日期:2018-12-15
  • 出版单位:传感技术学报
  • 年:2018
  • 期:v.31
  • 基金:国家自然科学基金项目(21005067);; 湖南省教育厅资助科研项目(17A044,16B060)
  • 语种:中文;
  • 页:CGJS201812008
  • 页数:6
  • CN:12
  • ISSN:32-1322/TN
  • 分类号:46-51
摘要
以聚苯乙烯微球为载体,利用杂交链式反应,发展了一种基于T-Hg~(2+)-T特异性识别及串联分子间裂分G-四链体-血红素DNA酶纳米线催化信号放大的Hg~(2+)"Turn on"型高灵敏生物传感器。当汞离子存在时,"T-Hg~(2+)-T"特殊结构的形成促使微球表面修饰的富T探针打开并捕获设计的发夹探针P1,由此引发与发夹探针P2之间的杂交链式反应。由于P1、P2的5'游离末端及3'游离末端都包含富G序列,通过杂交链式反应相互拉近并串联排列,在微球表面折叠形成包含串联分子间裂分G-四链体-血红素DNA酶的自组装DNA纳米线。在最优实验条件下,传感器对Hg~(2+)的线性检测范围为2 pmol/L~1 nmol/L,检出限为1.5 pmol/L;当试样中的共存离子大量存在时,传感器对Hg~(2+)仍然具有高的选择性。此方法检测Hg~(2+)具有良好的选择性、灵敏度及稳定性。
        Based on T-Hg~(2+)-T structure for specific recognition and the tandem intermolecular splitting G-quadruplexhemin DNAzymes nanowires for catalytic signal amplification,a highly sensitive"Turn-on"biosensor for detection of Hg~(2+)was developed on the polystyrene microbeads using the hybridization chain reaction. When Hg~(2+)was present in reaction system,the formation of T-Hg~(2+)-T special structure prompted T-rich DNA probes modified on the microbeads to open and capture the designed hairpin probe P1,which triggered the hybridization chain reaction between hairpin probe P1 and hairpin probe P2. Since the 5' free terminal and the 3' free terminal of hairpin probe P1 and P2 both contain the G-rich sequences which are contacted closely with each other and arranged in series through hybridization chain reaction,and the neighbouring G-rich sequences further fold to form autonomously assembled nanowires containing tandem intermolecular splitting G-quardruplex-hemin DNAzyme on the interface of polystyrene microspheres. Under the optimal experimental conditions,the linear range for detection of Hg~(2+)was 2 pmol/L ~ 1 nmol/L,and the detection limit was 1.5 pmol/L. The sensor still has a high selectivity to Hg~(2+)when the coexisting ions in the sample are abundant. The sensor had good selectivity,sensitivity,and stability for Hg~(2+)analysis.
引文
[1]Davidson P W,Myers G J,Weiss B.Mercury Exposure and Child Development Outcomes[J].Pediatrics,2004,113(Supplement 3):1023-1029.
    [2]Clifton J C.Mercury Exposure and Public Health[J].Pediatr Clin N Am,2007,54(2):237-269.
    [3]Zheng C B,Li Y,Ma Q,et al.Photorimduced Chemical Vapor Generation with Formic Acid for Ultrasensitive Atomic Fluorescence Spectrometric Determination of Mecury:Potential Application to Mecury Speciation in Water[J].J Anal At Spectrom,2005,20(8):746-750.
    [4]Lu J,He X,Zeng X,et al.Voltammetric Determination of Mercury(Ⅱ)in Aqueous Media Using Glassy Carbon Electrodes Modified with Novel Calix Arene[J].Talanta,2003,59(3):553-560.
    [5]Wang M,Feng W,Shi J,et al.Development of a Mild Mercaptoethanol Extraction Method for Determination of Mercury Species in Biological Samples by HPLC-ICP-MS[J].Talanta,2007,71(5):2034-2039.
    [6]Zhang W,Liu Q X,Guo Z H,et al.Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources[J].Molecules,2018,23(2):344.
    [7]Rubab M,Shahaz H M,Olaimat A N,et al.Biosensors for Rapid and Sensitive Detection of Staphylococcus Aureus in Food[J].Biosens Bioelectron,2018,105:49-57.
    [8]Wang L F,Jin J Z,Zhao L W,et al.Synthesis of C-Glycosyl Triazolyl Quinoline-Based Fluorescent Sensors for the Detection of Mercury Ions[J].Carbohydr Res,2016,433:41-46.
    [9]Wang G F,Huang H,Zhang X J.et al.Electrically Contacted Enzyme Based on Dual Hairpin DNA Structure and its Application for Amplified Detection of Hg2+[J].Biosens Bioelectron,2012,35(1):108-114.
    [10]王明华,赵二劳,李杜娟.检测重金属离子生物传感器的研究进展[J].生物技术通报,2013,0(10):46-51.
    [11]Ono A,Togashi H.Highly Selective Oligo-Nucleotide-Based Sensor for Mercury(Ⅱ)in Aqueous Solutions[J].Angew Chem Int ed,2004,43(33):4300-4302.
    [12]宋璐娜,张永花,薄红艳,等.基于发卡探针DNA/G-四链体模拟酶结构转化的高灵敏无标记荧光检测DNA[J].分析化学,2015,43(9):1402-1047.
    [13]Tian L,Qi J,Oderinde O,et al.Planar Intercalated Copper(Ⅱ)Complex Molecule as Small Molecule Enzyme Mimic Combined with Fe3O4Nanozyme for Bienzyme Synergistic Catalysis Applied to the MicroRNA Biosensor[J].Biosens Bioelectron,2018,110:110-117.
    [14]Kuklenyik Z,Marzilli L G.Mercury(II)Site-Selective Binding to a DNA Hairpin.Relationship of Sequence-Dependent Intra-and Interstrand Cross-Linking to the Hairpin-Duplex Conformational Transition[J].Inorg Chem,1996,35(19):5654-5662.
    [15]Zhou X H,Kong D M,Shen H X.Ag+and Cysteine Quantitation Based on G-Quadruplex-Hemin DNAzymes Disruption by Ag+[J].Anal Chem,2010,82(3):789-793.
    [16]Roembke B T,Nakayama S,Sintim H O.Nucleic Acid Detection Using G-Quadruplex Amplification Methodologies[J].Methods,2013,64(3):185-198.
    [17]Neo J L,Kamaladasan K,Uttamchandani M.G-Quadruplex Based Probes for Visual Detection and Sensing[J].Curr Pharm Des,2012,18(14):2048-2057.
    [18]郭亚辉,姚卫蓉,装仁军,等.G四链体在生物传感器中的应用[J].武汉大学学报,2017,63(1):9-21.
    [19]Dai J,He H,Duan Z,et al.Self-Replicating Catalyzed Hairpin Assembly for Rapid Signal Amplification[J].Anal Chem,2017,89(22):11971-11975.
    [20]孔德明.G-四链体-氯化血红素DNA酶在传感器设计中的应用[J].化学进展,2011,23(10):2119-2131.
    [21]孙艳丽.基于G-四链体-氯血红素DNA酶的传感器对血清中甲胎蛋白的检测[J].科学技术与工程,2014,14(14):5-9.
    [22]Lu N,Shao C,Deng Z.Rational Design of an Opticaladenosine Sensor by Conjugating a DNA Aptamer with Split DNAzyme Halves[J].Chem Commun,2008,46(14):6161-6163.
    [23]雷丽红,傅迎春,徐霞红,等.基于核酸适体的电化学生物传感器[J].化学进展,2009.21(4):724-731.
    [24]Li T,Wang E,Dong S.G-Quadruplex-Based DNAzyme as a Sensing Platform for Ultrasensitive Colorimetric Potassium Detection[J].Chem Commun,2009,7(5):580-582.
    [25]Zhou J,Bourdoncle A,Rosu F,et al.Tri-G-Quadruplex:Controlled Assembly of a G-Quadruplex Structure from Three G-Rich Strands[J].Angewandte Chem Int Ed,2012,51(44):11002-11005.
    [26]Cai N,Tan L,Li Y,et al.Biosensing Platform for the Detection of Uric Acid Based on Graphene Quantum Dots and G-Quadruplex/Hemin DNAzyme[J].Anal Chim Acta,2017,965:96-102.
    [27]Shimron S,Wang F,Orbach R,et al.Amplified Detection of DNAthrough the Enzyme-Free Autonomous Assembly of Hemin/G-Quadruplex DNAzyme Nanowires[J].Anal Chem,2012,84(2):1042-1048.
    [28]Li X,Li J,Zhu C,et al.A New Electrochemical Immunoassay for Prion Protein Based on Hybridization Chain Reaction with Hemin/G-Quadruplex DNAzyme[J].Talanta,2018,182:292-298.
    [29]Roembke B T,Nakayama S,Sintim H O.Nucleic Acid Detection Using G-Quadruplex Amplification Methodologies[J].Methods,2013,64(3):185-198.
    [30]Kong D M,Wang N,Guo X X,et al.‘Turn-on’Detection of Hg2+Ion Using a Peroxidase-Like Split G-Quadruplex-Hemin DNAzyme[J].Analyst,2010,135(3):545-549.
    [31]Ren W,Zhang Y,Huang W T,et al.Label-Free Colorimetric Detection of Hg2+Based on Hg2+-Triggered ExonucleaseⅢ-Assisted Target Recycling and DNAzyme Amplification[J].Biosens Bioelectron,2015,68:266-271.
    [32]赵秋伶,刘玲玲,杨丽娜,等.基于DNA的比色分析法快速测定尿液中的Hg2+[J].分析化学,2014,42(5):683-688.
    [33]Hopkins H,Gonzalez I J,Polley S D,et al.Highly Sensitive Detection of Malaria Parasitemia in a Malaria-Endemic Setting:Performance of a New Loop-Mediated Isothermal Amplification Kit in a Remote Clinic in Uganda[J].J Infect Dis,2013,208(4):645-652.
    [34]Yao L,Chen Y,Teng J,et al.Integrated Platform with Magnetic Purification and Rolling Circular Amplification for Sensitive Fluorescent Detection of Ochratoxin A[J].Biosens Bioelectron,2015,74:534-538.
    [35]Sun J,Jiang W,Zhu J,et al.Label-Free Fluorescence DualAmplified Detection of Adenosine Based on Exonuclease III-Assisted DNA Cycling and Hybridization Chain Reaction[J].Biosens Bioelectron,2015,70:15-20.
    [36]Song C,Xie G,Wang L,et al.DNA-Based Hybridization Chain Reaction for an Ultrasensitive Cancer Marker EBNA-1 Electrochemical Immunosensor[J].Biosens Bioelectron,2014,58:68-74.
    [37]Xu Q,Zhu G,Zhang C.Homogeneous Bioluminescence Detection of Biomolecules Using Target-Triggered Hybridization Chain Reaction-Mediated Ligation without Luciferase Label[J].Anal Chem,2013,85(14):6915-6921.
    [38]Yun W,Cai D,Jiang J,et al.Enzyme-Free and Label-Free Ultrasensitive Colorimetric Detection of Pb(2+)Using Molecular Beacon and DNAzyme Based Amplification Strategy[J].Biosens Bioelectron,2016,80:187-193.
    [39]Miao M,Tian J J,Luo Y B,et al.Terminal Deoxynucleotidyl Transferase-Induced DNAzyme Nanowire Sensor for Colorimetric Detection of Lipopolysaccharides[J].Biosens Bioelectron,2018,256:790-796.
    [40]Fernndez E,Vidal L,Costa-García A,et al.Mercury Determination in Urine Samples by Gold Nanostructured Screen-Printed Carbon Electrodes after Vortex-Assisted Ionic Liquid Dispersive Liquid-Liquid Microextraction[J].Anal Chim Acta,2016,915:49-55.
    [41]Fong B M,Siu T S,Lee J S,et al.Determination of Mercury in Whole Blood and Urine by Inductively Coupled Plasma Mass Spectrometry[J].J Anal Toxicol,2007,31(5):281-287.
    [42]赵秋伶,张尤华,于晓艳.基于核酸外切酶I的适配体荧光传感器检测人尿液中的Hg2+[J].分析化学,2016,44(7):1099-1105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700