用户名: 密码: 验证码:
The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal springs in the Constantine area, Northeastern Algeria
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal springs in the Constantine area, Northeastern Algeria
  • 作者:Riad ; Kouadra ; Abdeslam ; Demdoum ; Nabil ; Chabour ; Rebiha ; Benchikh
  • 英文作者:Riad Kouadra;Abdeslam Demdoum;Nabil Chabour;Rebiha Benchikh;Department of Geological Sciences, University of Frères Mentouri (Constantine 1);Department of Earth Sciences, University of Setif 1;
  • 英文关键词:Hydrogeochemistry;;Thermal waters;;Multivariate statistical analysis;;Silica geothermometers;;Mixing models;;Cold groundwaters
  • 中文刊名:DQHB
  • 英文刊名:地球化学学报(英文版)
  • 机构:Department of Geological Sciences, University of Frères Mentouri (Constantine 1);Department of Earth Sciences, University of Setif 1;
  • 出版日期:2019-04-15
  • 出版单位:Acta Geochimica
  • 年:2019
  • 期:v.38
  • 基金:supported by (Faculty of Earth Science, University of Constantine 1)
  • 语种:英文;
  • 页:DQHB201902009
  • 页数:15
  • CN:02
  • ISSN:52-1161/P
  • 分类号:122-136
摘要
This paper deals with the results of a hydrogeochemistry study on the thermal waters of the Constantine area, Northeastern Algeria, using geochemical and statistical tools. The samples were collected in December2016 from twelve hot springs and were analyzed for physicochemical parameters(electric conductivity, p H,total dissolved solids, temperature, Ca, Mg, Na, K, HCO_3,Cl, SO_4, and SiO_2). The waters of the thermal springs have temperatures varying from 28 to 51 °C and electric conductivity values ranging from 853 to 5630 l S/cm. Q-mode Cluster analysis resulted in the determination of two major water types: a Ca–HCO_3–SO_4 type with a moderate salinity and a Na–K–Cl type with high salinity. The plot of the major ions versus the saturation indices suggested that the hydrogeochemistry of thermal groundwater is mainly controlled by dissolution/precipitation of carbonate minerals, dissolution of evaporite minerals(halite and gypsum), and ion exchange of Ca(and/or Mg) by Na. The Gibbs diagram shows that evaporation is another factor playing a minor role. Principal Component Analysis produced three significant factors which have 88.2% of totalvariance that illustrate the main processes controlling the chemistry of groundwaters, which are respectively: the dissolution of evaporite minerals(halite and gypsum), ion exchange, and dissolution/precipitation of carbonate minerals. The subsurface reservoir temperatures were calculated using different cation and silica geothermometers and gave temperatures ranging between 17 and 279 °C. The Na–K and Na–K-Ca geothermometers provided high temperatures(up to 279 °C), whereas, estimated geotemperatures from K/Mg geothermometers were the lowest(17–53 °C). Silica geothermometers gave the most reasonable temperature estimate of the subsurface waters overlap between 20 and 58 °C, which indicate possible mixing with cooler Mg groundwaters indicated by the Na–K–Mg plot in the immature water field and in silica and chloride mixing models. The results of stable isotope analyses(δ~(18) O and δ~2 H) suggest that the origin of thermal water recharge is precipitation, which recharged from a higher altitude(600–1200 m) and infiltrated through deep faults and fractures in carbonate formations. They circulate at an estimated depth that does not exceed 2 km and are heated by a high conductive heat flow before rising to the surface through faults that acted as hydrothermal conduits.During their ascent to the surface, they are subjected to various physical and chemical changes such as cooling by conduction and change in their chemical constituents due to the mixing with cold groundwaters.
        This paper deals with the results of a hydrogeochemistry study on the thermal waters of the Constantine area, Northeastern Algeria, using geochemical and statistical tools. The samples were collected in December2016 from twelve hot springs and were analyzed for physicochemical parameters(electric conductivity, p H,total dissolved solids, temperature, Ca, Mg, Na, K, HCO_3,Cl, SO_4, and SiO_2). The waters of the thermal springs have temperatures varying from 28 to 51 °C and electric conductivity values ranging from 853 to 5630 l S/cm. Q-mode Cluster analysis resulted in the determination of two major water types: a Ca–HCO_3–SO_4 type with a moderate salinity and a Na–K–Cl type with high salinity. The plot of the major ions versus the saturation indices suggested that the hydrogeochemistry of thermal groundwater is mainly controlled by dissolution/precipitation of carbonate minerals, dissolution of evaporite minerals(halite and gypsum), and ion exchange of Ca(and/or Mg) by Na. The Gibbs diagram shows that evaporation is another factor playing a minor role. Principal Component Analysis produced three significant factors which have 88.2% of totalvariance that illustrate the main processes controlling the chemistry of groundwaters, which are respectively: the dissolution of evaporite minerals(halite and gypsum), ion exchange, and dissolution/precipitation of carbonate minerals. The subsurface reservoir temperatures were calculated using different cation and silica geothermometers and gave temperatures ranging between 17 and 279 °C. The Na–K and Na–K-Ca geothermometers provided high temperatures(up to 279 °C), whereas, estimated geotemperatures from K/Mg geothermometers were the lowest(17–53 °C). Silica geothermometers gave the most reasonable temperature estimate of the subsurface waters overlap between 20 and 58 °C, which indicate possible mixing with cooler Mg groundwaters indicated by the Na–K–Mg plot in the immature water field and in silica and chloride mixing models. The results of stable isotope analyses(δ~(18) O and δ~2 H) suggest that the origin of thermal water recharge is precipitation, which recharged from a higher altitude(600–1200 m) and infiltrated through deep faults and fractures in carbonate formations. They circulate at an estimated depth that does not exceed 2 km and are heated by a high conductive heat flow before rising to the surface through faults that acted as hydrothermal conduits.During their ascent to the surface, they are subjected to various physical and chemical changes such as cooling by conduction and change in their chemical constituents due to the mixing with cold groundwaters.
引文
Agelos P,Athina M,Christos H,Panagiotis P,Olga P,Eleni D,Ioannis R(2010)Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health.Environ Monit Assess170:87-97
    Al-ameri A,Schneider M,Abo-Lohom N et al(2014)Characteristics of stable isotopes of oxygen-18 and deuterium of groundwater in the Sana’a basin Aquifer systems,Yemen.Arab J Sci Eng39:5625
    Aminu I,Hafizan J,Mohd-Ekhwan T,Adamu M,Azman A,Hamza A(2015)Assessment of surface water quality using multivariate statistical techniques in the Terengganu River Basin,Malaysian.J Anal Sci 19(2):338-348
    Appelo CAJ,Postma D(1996)Geochemistry,groundwater and pollution.Balkema,Rotterdam
    Bahri F,Saibi H,Cherchali ME(2011)Characterization,classification,and determination of drinkability of some Algerian thermal waters.Arab J Geosci 4(1-2):207-219
    Barkaoui AE,Zarhloule Y,Rimi A,Verdoya M,Bouri S(2014)Hydrogeochemical investigations of thermal waters in the northeastern part of Morocco.Environ Earth Sci 71:1767-1780
    Belhai M,Fujimitsu Y,Bouchareb-Haouchine FZ et al(2016)Ahydrochemical study of the Hammam Righa geothermal waters in north-central Algeria.Acta Geochim 35:271-287
    Belhai M,Fujimitsu Y,Nishijima J,Bersi M(2017)Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters.Arab J Geosci 10:8
    Belkhiri L,Boudoukha A,Mouni L,Baouz T(2010)Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater-a case study:Ain Azel plain(Algeria).Geoderma 159:390-398
    Bencer S,Boudoukha A,Mouni L(2016)Multivariate statistical analysis of the groundwater of Ain Djacer area(Eastern of Algeria).Arab J Geosci 9:248
    Blake S,Henry T,Murray J,Flood R,Muller MR,Jones AG,Volker Rath(2016)Compositional multivariate statistical analysis of thermal groundwater provenance:a hydrogeochemical case study from Ireland.Appl Geochem 75:171-188
    Bouchareb-Haouchine FZ(1993)Apport de la ge′othermome′trie et des donne′es de forages profonds a`l’identification des ressources ge′othermiques de l’Alge′rie du Nord.Application a`la re′gion du Hodna.Me′moire de Magister,Univ.Alger,Alge′rie
    Bouchareb-Haouchine FZ(2012)Etude hydrochimique des sources thermales de l’Alge′rie du Nord-Potentialite′s ge′othermiques.These Doctorat en Sciences,USTHB,Algiers
    Bouchareb-Haouchine FZ,Issaad A,Bendhia H(1994)Estimation and interpretation of geothermal gradient in Northern Algeria.Bull Serv Ge′ol l’Alge′rie 5:69-74
    Craig H(1963)The isotopic geochemistry of water and carbon in geothermal area.In:Tongiori E(ed)Nuclear geol Truesdell AH(1976)Summary of section III.Geochemical techniques in exploration.In:Proceeding 2nd UN symposium on thedevelopment and use of geothermal resources,San Francisco,1975,1,pp 53-79
    Cu¨neyt G,Geoffrey D,John E,McCray A,Keith T(2002)Evaluation of graphical and multivariate statistical methods for classification of water chemistry data.Hydrogeol J 10:455-474
    Deutsch WJ(1997)Groundwater geochemistry:fundamentals,and applications to contamination.Lewis Publishers,Boca Raton
    Dib Adjoul H(1985)Le thermalisme de l’Est Alge′rien.The`se de Doctorat 3e`me cycle,U.S.T.H.B.,Alger,Algerie(in French)
    Dib Adjoul H(2008)Guide pratique des sources thermales de l’Est Alge′rien.Me′moires du Service Ge′ologique National,no 15,p 106(in French)
    Djebbar M(2005)Caracte′risation du syste`me karstique hydrothermal Constantine-Hamma-Bouziane-Salah Bey dans le Constantinois central(Alge′rie Nord-oriental).The`se de Doctorat,Universite′de Constantine,Alge′rie(in French)
    Djemmal S,Menani MR,Chamekh K et al(2017)The contribution of fracturations in the emergence of the thermal springs in Setif city,Eastern Algeria.Carbonates Evaporites.https://doi.org/10.1007/s13146-017-0375-0
    Durozoy G(1960)Les ressources en eau des massifs calcaires cre′tace′s de la re′gion de Constantine.Etude d’hydroge′ologie applique′e.2e?me The`se Sc.Publ.Dir.Hydraul.Equip.Rural.Serv.Sc.Alger(in French)
    Emblanch C,Zuppi GM,Mudry J,Blavoux B,Batiot C(2003)Carbon 13 of TDIC to quantify the role of the unsaturated zone:the example of the Vaucluse karst systems(Southeastern France).J Hydrol 279(1):262-274
    Farnham IM,Johannesson KH,Singh AK,Hodge VF,Stetzenbach KJ(2003)Factor analytical approaches for evaluating groundwater trace element chemistry data.Anal Chim Acta 490:123-138
    Fekraoui A(1988)Geothermal resources in Algeria and their possible use.Geothermics 17(2/3):515-519
    Feng Z,Yong L,Huaicheng G(2007)Application of multivariate statistical methods to water quality assessment of the water courses in Northwestern New Territories,Hong Kong.Environ Monit Assess 132:1-13
    Fisher RS,Mullican WF(1997)Hydrochemical evolution of sodiumsulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert,Trans-Pecos,Texas,USA.Hydrogeol J5(2):4-16
    Foued B,He′nia D,Lazhar B et al(2017)Hydrogeochemistry and geothermometry of thermal springs from the Guelma region,Algeria.J Geol Soc India 90:226-232
    Fournier RO(1977)Chemical geothermometers and mixing models for geothermal systems.Geothermics 5(41):50
    Fournier RO(1979a)Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems.J Volcanol Geotherm Res 1-2:1-16
    Fournier RO(1979b)A revised equation for Na/K geothermometer.Geotherm Resour Counc Trans 3:221-224
    Fournier RO,Truesdell AH(1973)An empirical Na-K-Ca geothermometer for natural waters.Geochim Cosmochim Acta37:1255-1275
    Gastmans D,Chang HK,Hutcheon I(2010)Stable isotopes(2H,18Oand13C)in groundwaters from the northwestern portion of the Guarani Aquifer System(Brazil).Hydrogeol J 18:1497
    Gibbs RJ(1970)Mechanism controlling world water chemistry.Science 170:1088-1090
    Giggenbach WF(1988)Geothermal solute equilibria,derivation of Na-K-Mg-Ca geoindicators.Geochim Cosmochim Acta52:2749-2765
    Issaadi A(1992)Le thermalisme dans son cadre ge′ostructurale,apports a`la connaissance de la structure profonde de l’Alge′rie etde ses ressources ge′othermales.The`se de Doctorat d’e′tat,IST,USTHB,Alger(in French)USTHB,Alger(in French)
    J?rgensen NO,Banoeng-Yakubo BK(2001)Environmental isotopes(18O,2H,and87Sr/86Sr)as a tool in groundwater investigations in the Keta Basin,Ghana.Hydrogeol J 9:190
    Kedaid FZ(2007)Database of the geothermal resources of Algeria.Geothermics 36:265-275
    Kedaid FZ,Mesbah M(1996)Geochemical approach to the Bou Hadjar hydrothermal system(NE Algeria).Geothermics25(2):249-257
    Kharaka YK,Mariner RH(1989)Chemical geothermometers and their application to formation waters from sedimentary basins.In:Naeser ND,McCulloh TH(eds)Thermal history of sedimentary basins.Springer,New York
    King AC,Raiber M,Cox ME(2014)Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer-stream connectivity during drought and flood:cressbrook Creek,southeast Queensland,Australia.Hydrogeol J 22:481
    Lahlou Mimi A,Ben Dhia H,Bouri S,Lahrach A,Ben Abidate L,Bouchareb-Haouchim F-Z(1998)Application of chemical geothermometers to thermal springs of the Maghreb,North Africa.Geothermics 27(2):211-233
    Magana BMI(1999)Geochemical interpretation of thermal fluid discharge from wells and springs in the Berlin geothermal field,El Salvador.Report,vol 7,pp 165-191
    Mencio A,Mas-Pla J(2008)Assessment by multivariate analysis of groundwater-surface water interactions in urbanized Mediterranean streams.J Hydrol 352(3-4):355-366
    Nosrati K,Van-Den-Eeckhaut M(2012)Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain,Iran.J Environ Earth Sci 65(1):331-344
    Omo-Irabor O,Olobaniyi SB,Oduyemi K,Akunna J(2008)Surface and groundwater water quality assessment using multivariate analytical methods:a case study of the Western Niger Delta,Nigeria.Phys Chem Earth Parts A/B/C 33(8-13):666-673
    Parkhurst DL,Appelo CAJ(1990)PHREEQC-2 a hydrogeochemical computer program.Geol Surv Water Res Inv,U.S
    Pathak JK,Alam M,Sharma S(2008)Interpretation of groundwater quality using multivariate statistical technique in Moradabad City,Western Uttar Pradesh State,India.E J Chem 5:607-619
    Rafighdoust Y,Eckstein Y,Harami RM,Mahmudy-Gharaie MH,Mahboub AA(2016)Using inverse modeling and hierarchical cluster analysis for hydrochemical characterization of springs and Talkhab River in Tang-Bijar oilfield,Iran.Arab J Geosci9:241
    Raykov T,Marcoulides GA(2008)An introduction to applied multivariate analysis.Taylor&Francis,New York,NY
    Rezig M(1991)Etude Ge′othermique du Nord-Est de l’Alge′rie.DEA,Universite′des Sciences et des Techniques du Languedoc,Montpellier(in French)
    Rezig M,Marty B(1995)Geothermal study of the northeastern part of Algeria.In:Proceedings of the world geothermal congress Florence,Italy,vol 2,pp 1151-1155
    Rimi A,Zarhloule Y,Barkaoui AE,Correi A,Carneiro J,Verdoya Met al(2012)Towards a de-carbonized energy system in northeastern Morocco:prospective geothermal resource.Renew Sustain Energy Rev 16:2207-2216
    Rozanski K,Aragua′s-Aragua′s L,Gonfiantini R(1993)Isotopic patters in modern global precipitation.In:Swart PK et al(eds)Climate change in continental isotopic records.American geophysical union monograph series,vol 78.American Geophysical Union,Washington,pp 1-36
    Saibi H(2009)Geothermal resources in Algeria.Renew Sustain Energy Rev 13:2544-2552
    Saibi H(2015)Geothermal resources in Algeria.In:Proceedings in world geothermal congress,Melbourne,Australia
    Saibi H,Ehara S,Fujimitsu Y,Nishijima J(2006)Progress of geothermal development in Algeria.J Geotherm Res Soc Jpn28(4):383-397
    Shaoping D(1997)Geochemical Interpretation of thermal fluid from the Yangyi high-temperature field,Tibet,China.Geothermal Training Programme,Orkustofnun,Grensasvegur 9,IS-108Reykjavik,Iceland Number,vol 5,pp 113-134
    Shrestha S,Kazama F(2007)Assessment of surface water quality using multivariate statistical techniques:Fuji river basin Japan.Environ Model Softw 22:464-475
    Singh CK,Shashtri S,Mukherjee S(2010)Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab,India.Environ Earth Sci 62:1387-1405
    Souag M(1985)Etude hydroge′ologique,hydrochimique et isotopique de la nappe ne′ritique septentrionale de la re′gion de Constantine(Alge′rie).The`se de Doctorat troisie`me cycle,Universite′de Paris Sud,Centre Orsay,France
    Tenalem A,Shimeles F,Wisotzky F,Demlie M,Wohnlich S(2009)Hierarchical cluster analysis of hydrochemical data as a tool for assessing the evolution and dynamics of groundwater across the Ethiopian rift.Int J Phys Sci 4:76-90
    Todorovic′M,Sˇtrbacˇki J,C′uk M,Andrijasˇevic′J,Sˇisˇovic′J,Papic′P(2016)Mineral and thermal waters of Serbia:multivariate statistical approach to hydrochemical characterization.In:Papic P(ed)Mineral and thermal waters of Southeastern Europe.Environmental earth sciences.Springer,Berlin,pp 81-95
    Triki I,Trabelsi N,Zairi M,Dhia HB(2014)Multivariate statistical and geostatistical techniques for assessing groundwater salinization in Sfax,a coastal region of Eastern Tunisia.Desalination Water Treat 52(10-12):1980-1989
    Truesdell AH(1976)Summary of section III.Geochemical techniques in exploration.In:Proceeding 2nd UN symposium on the development and use of geothermal resources,San Francisco,1975,vol 1,pp 53-79
    Truesdell AH,Fournier RO(1977)Procedure for estimating the temperature of a hot water component in a mixed water using a plot of dissolved silica versus enthalpy.U.S.Geol Surv J Res5:49-52
    Van der Weijden CH,Pacheco FAL(2003)Hydrochemistry,weathering and weathering rates on Madeira Island.J Hydrol283:122-145
    Verdeil P(1982)Algerian thermalism in its geostructural settinghow hydrogeology has helped in the elucidation of Algeria’s deep-seated structure.J Hydrol 56:107-117
    Verma MP(2000)Revised quartz solubility temperature dependence equation along the water-vapor saturation curve.In:Proceedings of the 2000.World geothermal congress,Kyushu and Tohoku,Japan,28 May-19 June,pp 1927-1932
    Vila JM(1980)La chaine alpine d’Alge′rie orientale et des confins Alge′ro-tunisiens.The`se de Doctorat,Universite′Paris VI(in French)
    Voute C(1967)Essai de synthe′se de l’histoire ge′ologique des environs d’Ain Fakroun,Ain Babouch et des re′gions limitrophes.Bull Serv Ge′ol l’Alge′rie 36:255(in French)
    Ward JH(1963)Hierarchical grouping to optimize an objective function.J Am Stat Assoc 58(301):236-244
    Wildi W(1984)La chaine tello-rifaine(Alge′rie-Maroc-Tunisie):structure,stratigraphie et e′volution du Trias au Mioce′ne.Rev Geogr Phys Geol Dyn 24:201-297(in French)
    Wolfgang KH,Le′opold S(2012)Applied multivariate statistical analysis.Edition 3:201-418
    Xu Y,Yan B,Luan Z,Zhu H,Wang L(2013)Application of stable isotope tracing technologies in identification of transformation among waters in Sanjiang Plain,Northeast China.Chin Geogr Sci 23:435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700