用户名: 密码: 验证码:
石英砂-腐殖酸-Cupriavidus gilardii CR3复合体对铜离子的吸附特性及机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Characteristics and Mechanism of Copper Ions by Quartz Sand-humic Acid-Cupriavidus gilardii CR3
  • 作者:杨玉双 ; 王小雨
  • 英文作者:YANG Yu-shuang;WANG Xiao-yu;School of Environment,Northeast Normal University;
  • 关键词:吸附剂 ; 吸附 ; 动力学模型 ; 等温吸附模型 ; 铜离子
  • 英文关键词:Adsorbent;;Adsorption;;Kinetic modeling;;Adsorption isotherms;;Copper ion
  • 中文刊名:AHNY
  • 英文刊名:Journal of Anhui Agricultural Sciences
  • 机构:东北师范大学环境学院;
  • 出版日期:2017-04-11 19:33
  • 出版单位:安徽农业科学
  • 年:2017
  • 期:v.45;No.550
  • 基金:国家自然科学基金项目(31170476,51678122);; 吉林省科学技术厅项目(20150414046GH)
  • 语种:中文;
  • 页:AHNY201709024
  • 页数:5
  • CN:09
  • ISSN:34-1076/S
  • 分类号:70-74
摘要
[目的]研究pH、初始铜离子浓度和吸附时间对石英砂-腐殖酸-Cupriavidus gilardii CR3复合体吸附铜离子的影响。[方法]利用等温吸附模型和动力学模型拟合试验数据,通过测定复合体吸附铜离子前后的Zeta电位、扫描电子显微镜-能谱(SEM-EDS)和傅里叶红外光谱(FTIR),研究吸附剂对铜离子的吸附特性及机理。[结果]pH是影响吸附能力的主要因素,静电作用可使复合体表面负电荷增多,提高吸附量。在最适pH(5.0)下,复合体对铜离子的最大吸附量为13.08 mg/g。复合体对铜离子的吸附过程符合化学单分子吸附的Langmuir模型和二级动力学模型。[结论]该研究认为静电作用和单分子化学吸附是石英砂-腐殖酸-Cupriavidus gilardii CR3复合体吸附铜离子的主要机制。
        [Objective]To study the effect of pH,initial copper ions concentration and contact time on composites of sand-humic acid-Cupriavidus gilardii CR3.[Methods]Experimental data were simulated by adsorption isotherms and kinetics.Adsorption characteristics and mechanism of copper ions by adsorbents was studied by determining the Zeta potential before and after adsorption of copper ions,and scanning SEMEDS and FTIR.[Results]The results showed that pH was important parameters for the adsorption capacity of composites for copper ions.Electrostatic effect increased the negative charge on the surface of composite,and increased adsorption capacity.At the optimum pH(5.0),the maximum adsorption capacity of the complex was 13.08 mg/g.The adsorption process of copper ions by composites of sand-humic acidCupriavidus gilardii CR3 was in according with Langmuir model and two order kinetic model.[Conclusion]The study considered that electrostatic interaction and single molecule chemical adsorption were the main mechanisms of adsorption of copper ions by composites of sand-humic acid-bcateria.
引文
[1]LI Z Y,FAN X Y,QI X B,et al.The impact of renewable wastewater on the distribution of heavy metals in plants,soil and underground water[J].China rural Water and hydropower,2012,7:5-8.
    [2]ANAND R R,ASPANDIAR M F,NOBLE R R P.A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith[J].Ore geology reviews,2015,73:394-416.
    [3]WEAVER L,WEBBER J B,HICKSON A C,et al.Biofilm resilience to desiccation in groundwater aquifers:A laboratory and field study[J].Science of the total environment,2015,514:281-289.
    [4]CELIS R,HERMOSIN M C,CORNEJO J.Heavy metal adsorption by functionalized clays[J].Environ Sci Technol,2000,34(34):4593-4599.
    [5]PEACOCK C L,SHERMAN D M.Surface complexation model for multisite adsorption of copper(II)onto kaolinite[J].Geochim Cosmochim Acta,2005,69(15):3733-3745.
    [6]HUANG Q Y,CHEN W L,XU L H.Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite[J].Geomicrobiol J,2005,22(5):227-236.
    [7]EL-ESWED B,KHALILI F.Adsorption of Cu(II)and Ni(II)on solid humic acid from the Azraq area,Jordan[J].Journal of colloid and interface science,2006,299(2):497-503.
    [8]PADMAPRIYA G,MURUGESAN A G.Biosorption of copper ions using rhizoplane bacterial isolates isolated from Eicchornia crassipes((Mart.)solms)with kinetic studies[J].Desalination and water treatment,2015,53(13):3513-3520.
    [9]ZHU J,HUANG Q Y,PIGNA M,et al.Competitive sorption of Cu and Cr on goethite and goethite-bacteria complex[J].Chemical engineering journal,2012,179(1):26-32.
    [10]ARIAS M,BARRAL M T,MEJUTO J C.Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids[J].Chemosphere,2002,48(10):1081-1088.
    [11]FANG L C,CAI P,LI P X,et al.Microcalorimetric and potentiometric titration studies on the adsorption of copper by P.putida and B.thuringiensis and their composites with minerals[J].Journal of hazardous materials,2010,181(1/2/3):1031-1038.
    [12]DU H H,CHEN W L,CAI P,et al.Cd(II)sorption on montmorillonitehumic acid-bacteria composites[J].Scientific reports,2016,6:19499.
    [13]DU H H,CHEN W L,CAI P,et al.Cadmium adsorption on bacteria–mineral mixtures:Effect of naturally occurring ligands[J].European journal of soil science,2016,67(5):641-649.
    [14]CHEN W M,WU C H,JAMES E K,et al.Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica[J].Journal of hazardous materials,2008,151(2/3):364-371.
    [15]MONSIEURS P,MOORS H,VAN H R,et al.Heavy metal resistance in Cupriavidus metallicdurans CH34 is governed by an intricate transcriptional network[J].Biometals,2011,24(6):1133-1151.
    [16]WANG X Y,CHEN M L,XIAO J F,et al.Genome sequence analysis of the naphthenic acid degarding and metal resistant bacterium Cupriavidus gilardii CR3[J].Plos one,2015,10(8):132881.
    [17]LI X N,LI A R,LONG M Z,et al.Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China[J].Journal of environmental health science and engineering,2015,13(1):1-8.
    [18]CHEN X C,WAMG Y P,LIN Q,et al.Biosorption of copper(II)and zinc(II)from aqueous solution by Pseudomonas putida CZ1[J].Colloids Surf B:Biointerfaces,2005,46(2):101-107.
    [19]XIE H,ZHAO Q Q,ZHOU Z R,et al.Correction:Efficient removal of Cd(II)and Cu(II)from aqueous solution by magnesium chloride-modified Lentinula edodes[J].Rsc Adv,2015,5(42):33478-33488.
    [20]吴平霄,徐玉芬,朱能武,等.高岭土/胡敏酸复合体对重金属离子吸附解吸实验研究[J].矿物岩石地球化学通报,2008,27(4):356-362.
    [21]BAYRAMOGLU G,BEKTAS S,ARICA M Y.Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor[J].Journal of hazardous materials,2003,101(3):285-300.
    [22]VEIT M T,TAVARES C R G,GOMES-DA-COSTA S M,et al.Adsorption isotherms of copper(II)for two species of dead fungi biomasses[J].Process Biochem,2005,40(10):3303-3308.
    [23]WANG N,DU H H,HUANG Q Y,et al.Surface complexation modeling of Cd(II)sorption to montmorillonite,bacteria,and their composite[J].Biogeosciences discussions,2016,13(19):5557-5566.
    [24]WALKER S G,FLEMMING C A,FERRIS F G,et al.Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution[J].Applied and environmental microbiology,1989,55(11):2976-2984.
    [25]HUANG F,DANG Z,GUO C L,et al.Biosorption of Cd(II)by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J].Colloids Surf B:Biointerfaces,2013,107(4):11-18.
    [26]LU W B,SHI J J,WANG C H,et al.Biosorption of lead,copper and cadmium by an indigenous isolate Enterobacter sp.J1 possessing high heavymetal resistance[J].Journal of hazardous materials,2006,134(1/2/3):80-86.
    [27]GAO X D,CHOROVER J.In-situ monitoring of Cryptosporidium parvum oocyst surface adhesion using ATR-FTIR spectroscopy[J].Colloids Surf B:Biointerfaces,2009,71(2):169-176.
    [28]OMOIKE A,CHOROVER J.Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis[J].Geochim Cosmochim Acta,2006,70(4):827-838.
    [29]UESHIMA M,GINN B R,HAACK E A,et al.Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances[J].Geochim Cos-mochim Acta,2008,72(24):5885-5895.
    [30]XIA L,XU X J,ZHU W,et al.A comparative study on the biosorption of Cd2+onto Paecilomyces lilacinus XLA and Mucoromycote sp.XLC[J].Int J Mol Sci,2015,16(7):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700