用户名: 密码: 验证码:
激光选区熔化热输入参数对Inconel 718合金温度场的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Heat Input Parameters on Temperature Field in Inconel 718 Alloy during Selective Laser Melting
  • 作者:张亮 ; 吴文恒 ; 卢林 ; 倪晓晴 ; 何贝贝 ; 杨启云 ; 祝国梁 ; 顾芸仰
  • 英文作者:ZHANG Liang;WU Wen-heng;LU Lin;NI Xiao-qing;HE Bei-bei;YANG Qi-yun;ZHU Guo-liang;GU Yun-yang;Shanghai Engineering Research Center of 3D Printing Materials;Shanghai Research Institute of Materials;School of Materials Science and Engineering,Shanghai Jiao Tong University;Department of Mechanical and Aerospace Engineering,Rutgers University;
  • 关键词:激光选区熔化 ; 有限元模拟 ; 温度场 ; 熔池大小 ; Inconel ; 718合金
  • 英文关键词:selective laser melting;;finite element simulation;;temperature field;;size of molten pool;;Inconel 718 alloy
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:上海3D打印材料工程技术研究中心;上海材料研究所;上海交通大学材料科学与工程学院;新泽西州立罗格斯大学机械与航天工程学院;
  • 出版日期:2018-07-12 14:02
  • 出版单位:材料工程
  • 年:2018
  • 期:v.46;No.422
  • 基金:2016年国家工业强基工程项目(TC160A310-19);; 上海材料基因组研究院项目(16DZ2260605);; 上海产业研究院创新先锋计划(16CXXF006)
  • 语种:中文;
  • 页:CLGC201807005
  • 页数:7
  • CN:07
  • ISSN:11-1800/TB
  • 分类号:33-39
摘要
采用有限元模拟及实验验证相结合的方法,通过模拟随温度变化的粉体层和已凝固合金层的热物理参数转化及激光往复扫描过程等,研究了不同激光扫描速率和功率条件下,制件温度场分布、熔池大小的变化规律。基于激光线能量密度的激光热输入综合参数,总结了Inconel 718合金激光选区熔化过程中熔池大小的预测方法。结果表明,在激光的作用下,温度场等温线分布呈现椭球型,同时椭球型向已凝固合金层偏移。在本次实验参数研究范围内,激光线能量密度与成型过程中熔池大小之间呈线性增长关系。同时,本研究通过激光选区熔化设备制备了不同激光热输入条件下的Inconel 718合金试样,并对熔池大小进行了实验验证,所得实验数据与模型预测结果吻合良好。
        This article combines the finite element simulation and experimental verification to study the effect of laser power and scanning velocity on the temperature distribution,and the size of molten pool during selective laser melting,through simulating the laser reciprocating scanning and transformation between powder material and solidified alloy during SLM.A temperature dependent thermal-mechanical properties of materials is considered,which includes the properties conversion between powder layer and solidified alloy.By presenting a comprehensive parameter of laser heat input-laser line energy density,the effect of line energy density on molten pool in Inconel 718 alloy is summarized,and the size of molten pool can be predicted.The results indicate that temperature field isotherm distribution presents as ellipsoid with the effect of moving laser,and in addition,ellipsoid shifts to solidified alloy layer.Within the scope of the study parameters,the laser line energy density and the size of molten pool during the deformation exhibit linear growth relationship.Furthermore,several Inconel 718 alloy specimens in different laser input conditions were produced using SLM equipments,in order to verify the simulated molten pool size.The result shows that experimental measurements are in good agreement with the model predictions.
引文
[1]齐欢.INCONEL 718(GH4169)高温合金的发展与工艺[J].材料工程,2012(8):92-100.QI H.Review of Inconel 718alloy:its history,properties,processing and developing substitutes[J].Journal of Materials Engineering,2012(8):92-100.
    [2]宋宜四,高万夫,王超,等.热处理工艺对Inconel718合金组织、力学性能及耐蚀性能的影响[J].材料工程,2012(6):37-42.SONG Y S,GAO W F,WANG C,et al.Effect of heat treatment technology on microstructure,mechanical property and corrosion resistance of nickel-base alloy Inconel718[J].Journal of Materials Engineering,2012(6):37-42.
    [3]张永忠,石力开.激光快速成形镍基高温合金研究[J].航空材料学报,2002,22(1):22-25.ZHANG Y Z,SHI L K.Research on laser direct deposition of nickel base superalloy[J].Journal of Aeronautical Materials,2002,22(1):22-25.
    [4]吴文恒,张亮,何贝贝,等.选择性激光熔化增材制造工艺过程模拟研究现状[J].理化检验-物理分册,2016,52(10):693-697.WU W H,ZHANG L,HE B B,et al.Current status of research on computer simulation of selective laser melting additive manufacturing process[J].Physical Testing and Chemical Analysis Part A:Physical Testing,2016,52(10):693-697.
    [5]肖猛.直接激光烧结镍基高温合金的工艺研究[D].南京:南京航空航天大学,2006.XIAO M.Research on direct laser metal sintering of nickel-based metal powder material[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2006.
    [6]THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta Materialia,2010,58(9):3303-3312.
    [7]OLAKANMI E O,COCHRANE R F,DALGARNO K W.A review on selective laser sintering/melting(SLS/SLM)of aluminium alloy powders:processing,microstructure and properties[J].Progress in Materials Science,2015,74:401-477.
    [8]CHILDS T H C,HAUSER C.Raster scan selective laser melting of the surface layer of a tool steel powder bed[J].Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2005,219(4):379-384.
    [9]MATSUMOTO M,SHIOMI M,OSAKADA K,et al.Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing[J].International Journal of Machine Tools&Manufacture,2002,42(1):61-67.
    [10]GUSAROV A V,YADROITSEV I,BERTRAND P,et al.Heat transfer modelling and stability analysis of selective laser melting[J].Applied Surface Science,2007,254(4):975-979.
    [11]GUSAROV A V,SMUROV I.Two-dimensional numerical modelling of radiation transfer in powder beds at selective laser melting[J].Applied Surface Science,2009,255(10):5595-5599.
    [12]WU J,WANG L,AN X.Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting[J].Optik-International Journal for Light and Electron Optics,2017,137(5):65-78.
    [13]YU G,GU D,DAI D,et al.On the role of processing parameters in thermal behavior,surface morphology and accuracy during laser 3Dprinting of aluminum alloy[J].Journal of Physics D Applied Physics,2016,49(13):135501.
    [14]ZHANG D Q,CAI Q Z,LIU J H,et al.Select laser melting of W-Ni-Fe powders:simulation and experimental study[J].The International Journal of Advanced Manufacturing Technology,2010,51(5):649-658.
    [15]RONG T,GU D,SHI Q,et al.Effects of tailored gradient interface on wear properties of WC/Inconel 718composites using selective laser melting[J].Surface and Coatings Technology,2016,307:418-427.
    [16]CHENG B,SHRESTHA S,CHOU K.Stress and deformation evaluations of scanning strategy effect in selective laser melting[J].Additive Manufacturing,2016,12:240-251.
    [17]王忻凯,邢丽,徐卫平,等.工艺参数对铝合金搅拌摩擦增材制造成形的影响[J].材料工程,2015,43(5):8-12.WANG Q K,XING L,XU W P,et al.Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J].Journal of Materials Engineering,2015,43(5):8-12.
    [18]KRUTH J P,LEVY G,KLOCKE F,et al.Consolidation phenomena in laser and powder-bed based layered manufacturing[J].CIRP Annals-Manufacturing Technology,2007,56(2):730-759.
    [19]GU D,WANG H,ZHANG G.Selective laser melting additive manufacturing of Ti-based nanocomposites:the role of nanopowder[J].Metallurgical and Materials Transactions A,2014,45(1):464-476.
    [20]GOLDAK J,CHAKRAVARTI A,BIBBY M.A new finite element model for welding heat sources[J].Metallurgical Transactions B,1984,15(2):299-305.
    [21]GOLDAK J,BIBBY M,MOORE J,et al.Computer modeling of heat flow in welds[J].Metallurgical Transactions B,1986.17:587-600.
    [22]LEE C H,CHANG K H,PARK J U.Three-dimensional finite element analysis of residual stresses in dissimilar steel pipe welds[J].Nuclear Engineering and Design,2013,256:160-168.
    [23]KELLER N,NEUGEBAUER F,XU H,et al.Thermo-mechanical simulation of additive layer manufacturing of titanium aerospace structures[C]∥LightMAT,Bremen,Germany,2013.
    [24]CRIALES L E,ARISOY Y M,OZEL T.Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625[J].The International Journal of Advanced Manufacturing Technology,2016,86(9/12):2653-2666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700