用户名: 密码: 验证码:
钙钛矿太阳能电池研究进展:空间电势与光电转换机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advances in perovskite solar cells:Space potential and optoelectronic conversion mechanism
  • 作者:王言博 ; 崔丹钰 ; 张才益 ; 韩礼元 ; 杨旭东
  • 英文作者:Wang Yan-Bo;Cui Dan-Yu;Zhang Cai-Yi;Han Li-Yuan;Yang Xu-Dong;State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University;
  • 关键词:钙钛矿太阳能电池 ; 开尔文探针力显微镜 ; 空间电势 ; 电荷载流子
  • 英文关键词:perovskite solar cells;;Kelvin probe force microscopy;;space potential;;charge carrier
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:上海交通大学金属基复合材料国家重点实验室;
  • 出版日期:2019-08-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11574199,11674219)资助的课题~~
  • 语种:中文;
  • 页:WLXB201915005
  • 页数:8
  • CN:15
  • ISSN:11-1958/O4
  • 分类号:49-56
摘要
钙钛矿太阳能电池具有高光电转换效率和低成本制备的特点,是极具希望实现大规模应用的下一代光伏技术.然而,对该类器件的光电转换过程的认知仍然不够清晰,相关研究难以直接观测器件内部的空间电势及其对光生电荷载流子的影响.开尔文探针力显微镜技术能够直接探测出器件空间电势的分布,进而直接反映器件工作的状态,成为理解钙钛矿太阳能电池的光电转换机理的有效途径.本文主要介绍了钙钛矿太阳能电池内部空间电势分布与光电转换机制的研究进展,集中讨论了通过开尔文探针力显微镜技术直接探测空间电势的光致变化和电致变化来揭示电荷载流子产生、分离、输运、复合等光电转换关键机制,并对其在未来研究中存在的问题和挑战做了进一步的展望.
        Perovskite solar cells, as a promising next-generation photovoltaic technology for large-scale application,have demonstrated the advantages of high absorption coefficient, tunable bandgap, considerable photoelectric conversion efficiency and low-cost fabrication. However, the photoelectric conversion process within the device is still not understood clearly. One of the major reasons is that it is difficult to directly observe the space potential inside the device and its effect on the photogenerated charge carriers. The direct measurement and analysis of the space potential inside the device and the clarification of the intrinsic relationship between the space potential and the charge carrier micro-process under illumination and different electric field conditions can reveal the photoelectric conversion mechanism in depth, and thus providing the scientific research basis for the further development. Kelvin probe force microscopy(KPFM), a testing technology that is non-contact, can detect the space potential distribution without any damage to the device, demonstrating the great potential to unveil the working mechanism of perovskite solar cells accurately. Such a characterization method can work under vacuum condition. The KPFM combines Kelvin method of measuring contact potential difference with the scan probe microscopy to characterize internal carrier dynamic behavior with high resolution on a nanometer scale. The study of the spatial potential distribution of semiconductor device plays an important role in understanding the working mechanism of new perovskite solar cells. For example, under an open-circuit condition, the intensity and width of the electric field and space charge region can be obtained from the spatial potential distribution, and the bending direction of the energy band can be judged according to the increase or decrease of the potential. While in a short-circuit case, the generation and transport of charge carriers can be obtained. In this review, we mainly introduce the research progress of the space potential distribution and optoelectronic conversion mechanism in perovskite solar cells. The key mechanism of charge carrier generation,separation, transport and recombination are revealed by using KPFM to directly observe the space potential variations caused by light or electric field. We also prospect the issues and challenges in the future research.
引文
[1]Kojima A,Teshima K,Shirai Y,Miyasaka T 2009 J.Am.Chem.Soc.131 6050
    [2]Im J H,Lee C R,Lee J W,Park S W,Park N G 2011Nanoscale 3 4088
    [3]Lee M M,Teuscher J,Miyasaka T,Murakami T N,Snaith HJ 2012 Science 338 643
    [4]Cao Y,Wang N,Tian H,Guo J,Wei Y,Chen H,Miao Y,Zou W,Pan K,He Y,Cao H,Ke Y,Xu M,Wang Y,Yang M,Du K,Fu Z,Kong D,Dai D,Jin Y,Li G,Li H,Peng Q,Wang J,Huang W 2018 Nature 562 249
    [5]Lin K,Xing J,Quan L N,García de Arquer F P,Gong X,Lu J,Xie L,Zhao W,Zhang D,Yan C,Li W,Liu X,Lu Y,Kirman J,Sargent E H,Xiong Q,Wei Z 2018 Nature 562 245
    [6]Kim Y C,Kim K H,Son D Y,Jeong D N,Seo J Y,Choi Y S,Han I T,Lee S Y,Park N G 2017 Nature 550 87
    [7]Burschka J,Pellet N,Moon S J,Humphry-Baker R,Gao P,Nazeeruddin M K,Gr?tzel M 2013 Nature 499 316
    [8]Jeon N J,Noh J H,Kim Y C,Yang W S,Ryu S,Seok S I2014 Nat.Mater.13 897
    [9]Yang M J,Zhang T Y,Schulz P,Li Z,Li G,Kim D H,Guo N J,Berry J J,Zhu K,Zhao Y X 2016 Nat.Commun.712305
    [10]Ye F,Chen H,Xie F X,Tang W T,Yin M S,He J J,Bi E B,Wang Y B,Yang X D,Han L Y 2016 Energy Environ.Sci.92295
    [11]Wang L,Zhou H,Hu J,Huang B,Sun M,Dong B,Zheng G,Huang Y,Chen Y,Li L,Xu Z,Li N,Liu Z,Chen Q,Sun LD,Yan C H 2019 Science 363 265
    [12]Chen W,Wu Y,Yue Y,Liu J,Zhang W,Yang X,Chen H,Bi E,Ashraful I,Gratzel M,Han L 2015 Science 350 944
    [13]Liu J,Wu Y Z,Qin C J,Yang X D,Yasuda T,Islam A,Zhang K,Peng W Q,Chen W,Han L Y 2014 Energy Environ.Sci.7 2963
    [14]Arora N,Dar M I,Hinderhofer A,Pellet N,Schreiber F,Zakeeruddin S M,Gratzel M 2017 Science 358 768
    [15]Zhou H P,Chen Q,Li G,Luo S,Song T B,Duan H S,Hong Z R,You J B,Liu Y S,Yang Y 2014 Science 345 542
    [16]Luo D Y,Yang W Q,Wang Z P,Sadhanala A,Hu Q,Su R,Shivanna R,Trindade G F,Watts J F,Xu Z J,Liu T H,Chen K,Ye F J,Wu P,Zhao L C,Wu J,Tu Y G,Zhang YF,Yang X Y,Zhang W,Friend R H,Gong Q H,Snaith H J,Zhu R 2018 Science 360 1442
    [17]Tan H,Jain A,Voznyy O,Lan X,García de Arquer F P,Fan J Z,Quintero-Bermudez R,Yuan M,Zhang B,Zhao Y,Fan F,Li P,Quan L N,Zhao Y,Lu Z H,Yang Z,Hoogland S,Sargent E H 2017 Science 355 722
    [18]Wu T,Wang Y,Li X,Wu Y,Meng X,Cui D,Yang X,Han L 2019 Adv.Energy Mater.9 1803766
    [19]Jiang C S,Yang M J,Zhou Y Y,To B,Nanayakkara S U,Luther J M,Zhou W L,Berry J J,van de Lagemaat J,Padture N P,Zhu K,Al-Jassim M M 2015 Nat.Commun.68397
    [20]Kang Z,Si H,Shi M,Xu C,Fan W,Ma S,Kausar A,Liao Q,Zhang Z,Zhang Y 2019 Sci.China:Mater.62 776
    [21]Heiland G 1975 Berichte der Bunsengesellschaft für Physikalische Chemie 79 641
    [22]Nonnenmacher M,O’Boyle M P,Wickramasinghe H K 1991Appl.Phys.Lett.58 2921
    [23]Bergmann V W,Weber S A L,Javier Ramos F,Nazeeruddin M K,Gr?tzel M,Li D,Domanski A L,Lieberwirth I,Ahmad S,Berger R 2014 Nat.Commun.5 5001
    [24]Dymshits A,Henning A,Segev G,Rosenwaks Y,Etgar L2015 Sci.Rep.5 8704
    [25]Cai M L,Ishida N,Li X,Yang X D,Noda T,Wu Y Z,Xie FX,Naito H,Fujita D,Han L Y 2018 Joule 2 296
    [26]Chang J,Xiao J,Lin Z,Zhu H,Xu Q H,Zeng K,Hao Y,Ouyang J 2016 J.Mater.Chem.A 4 17464
    [27]Do Kim H,Ohkita H,Benten H,Ito S 2016 Adv.Mater.28917
    [28]Li M,Yan X,Kang Z,Liao X,Li Y,Zheng X,Lin P,Meng J,Zhang Y 2017 ACS Appl.Mater.Interfaces 9 7224
    [29]Zhang W,Pathak S,Sakai N,Stergiopoulos T,Nayak P K,Noel N K,Haghighirad A A,Burlakov V M,de Quilettes DW,Sadhanala A,Li W Z,Wang L D,Ginger D S,Friend RH,Snaith H J 2015 Nat.Commun.6 10030
    [30]Li W,Rothmann M U,Liu A,Wang Z Y,Zhang Y P,Pascoe A R,Lu J F,Jiang L C,Chen Y,Huang F Z,Peng Y,Bao QL,Etheridge J,Bach U,Cheng Y B 2017 Adv.Energy Mater.7 1700946
    [31]Yun J S,Kim J,Young T,Patterson R J,Kim D,Seidel J,Lim S,Green M A,Huang S J,Ho-Baillie A 2018 Adv.Funct.Mater.28 1705363
    [32]Wang C,Xiao C,Yu Y,Zhao D,Awni R A,Grice C R,Ghimire K,Constantinou I,Liao W,Cimaroli A J,Liu P,Chen J,Podraza N J,Jiang C S,Al-Jassim M M,Zhao X,Yan Y 2017 Adv.Energy Mater.7 1700414
    [33]Xiao C X,Wang C L,Ke W J,Gorman B P,Ye J C,Jiang CS,Yan Y F,Al-Jassim M M 2017 ACS Appl.Mater.Interfaces 9 38373
    [34]Lan F,Jiang M,Tao Q,Li G 2018 IEEE J.Photovolt.8 125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700