用户名: 密码: 验证码:
水合物法捕集烟气中CO_2的新拟合热力学模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A newly fitted thermodynamic model for the capture of CO_2 from flue gas by the hydrate method
  • 作者:李璐伶 ; 赵金洲 ; 李海涛 ; 张烈辉 ; 樊栓狮 ; 李清平 ; 庞维新 ; 吕鑫 ; 郑利军 ; 魏纳
  • 英文作者:Li Luling;Zhao Jinzhou;Li Haitao;Zhang Liehui;Fan Shuanshi;Li Qingping;Pang Weixin;Lü Xin;Zheng Lijun;Wei Na;State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation//Southwest Petroleum University;MOE Key Laboratory of Heat Transfer Enhancement and Process Energy Conservation//South China University of Technology;CNOOC Research Institute;
  • 关键词:水合物法 ; 烟气 ; CO_2捕集 ; CO_2热力学模型 ; 多级水合反应 ; 能量参数 ; Langmuir吸收系数 ; 预测
  • 英文关键词:Hydrate-based gas separation;;Flue gas;;CO_2 capture;;CO_2 thermodynamic model;;Multi-stage hydration reaction;;Energy parameter;;Langmuir absorption coefficient;;Prediction
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:"油气藏地质及开发工程"国家重点实验室·西南石油大学;华南理工大学传热强化与过程节能教育部重点实验室;中海油研究总院有限责任公司;
  • 出版日期:2019-04-25
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.306
  • 基金:国家自然科学基金项目“海洋天然气水合物开采利用中甲烷储存与二氧化碳分离封存的研究”(编号:21736005);; 中国博士后科学基金面上资助项目“新型低成本水合物法捕集烟气中CO2工艺流程模拟优化研究”(编号:2017M623060)
  • 语种:中文;
  • 页:TRQG201904018
  • 页数:7
  • CN:04
  • ISSN:51-1179/TE
  • 分类号:110-116
摘要
水合物法捕集烟气中的CO_2具有能耗低、操作简便和有利于后续CO_2储存利用的优点,为了降低多级水合反应累计的总误差,建立准确的热力学模型就显得尤为重要。为此,基于vdW-P+CPA模型,考虑了CO_2与H_2O之间的相互缔合作用,重新拟合了热力学模型中的参数。首先将H_2O与CO_2的能量参数α~(0.5)分别拟合为[1-(T/Tc)~(0.5)]的三次函数与一次函数,然后基于与温度相关的二元交互作用参数(k_(ij)),将vdW-P模型中Langmuir吸收系数的计算参数重新拟合。研究结果表明:①新拟合的热力学模型在预测饱和液相密度时,H_2O与CO_2的平均绝对误差分别由1.84%降至0.08%、由4.06%降至2.09%;②在预测纯CO_2与纯N_2生成水合物的相平衡压力时,平均绝对误差分别为0.86%与0.82%;③在计算不同组成烟气生成水合物的相平衡条件时,平均绝对误差由15.16%降至5.02%。结论认为,新拟合的热力学模型准确度较高,一定程度上降低了多级水合反应的总累计误差,为水合物法捕集烟气中CO_2的实际应用提供了参考。
        The hydrate-based gas separation for capturing CO_2 from flue gas has the characteristics of low energy consumption, simple operation and convenience for subsequent CO_2 storage and utilization. In order to reduce the total cumulative deviation of multi-stage hydration reaction, it is of great importance to establish an accurate thermodynamic model. Based on the vdW-P+CPA model, therefore, we refitted the parameters of the thermodynamic model considering the association between CO_2 and H_2O. Firstly, the energy parameter α~(0.5) of H_2O and CO_2 were developed as the cubic function and the liner function of [1-(T/Tc)~(0.5)], respectively. Then, the calculation parameters of Langmuir absorption coefficient of vdW-P model was refitted based on the temperature dependent binary interaction parameters k_(ij).And the following research results were obtained. First, when the newly fitted thermodynamic model is used to predict the density of saturated fluid, the average absolute deviation(AAD) of H_2O drops from 1.84% to 0.08% and that of CO_2 drops from 4.06% to 2.09%. Second, when it is used to predict the phase equilibrium pressure of the hydrate generated from pure CO_2 and pure N_2, the AAD is 0.86% and0.82%, respectively. Third, when it is used to calculate the phase equilibrium condition of hydrate generated from flue gas with different compositions, the AAD is decreased from 15.16% to 5.02%. In conclusion, this newly fitted thermodynamic model is of higher accuracy and it, to some extent, can decrease the total accumulative deviation of multi-stage hydration reaction. The research results provide reference for the actual application of the hydrate-based gas separation for capturing CO_2 from flue gas.
引文
[1]Yang H,Xu Z,Fan M,Gupta R,Slimane RB,Bland AE,et al.Progress in carbon dioxide separation and capture:A review[J].Journal of Environmental Sciences,2008,20(1):14-27.
    [2]Zhu Lin,He Yangdong,Li Luling,LüLiping&He Jinling.Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission[J].Energy,2018,149:34-46.
    [3]Shi Bohui,Yang Liang,Fan Shuanshi&Lou Xia.An investigation on repeated methane hydrates formation in porous hydrogel particles[J].Fuel,2017,194:395-405.
    [4]Tang LG,Xiao R,Huang C,Feng ZP&Fan SS.Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment[J].Energy&Fuels,2005,19(6):2402-2407.
    [5]El Hadri N,Quang DV,Goetheer ELV&Abu Zahra MRM.Aqueous amine solution characterization for post-combustion CO2 capture process[J].Applied Energy,2017,185:1433-1449.
    [6]Zhu Lin,Li Luling,Zhang Zheng,Chen Hu,Zhang Le&Wang Feng.Thermodynamics of hydrogen production based on coal gasification integrated with a dual chemical looping process[J].Chemical Engineering&Technology,2016,39(10):1912-1920.
    [7]于干.化学吸收法/变压吸附法脱除沼气中CO2的实验研究[D].杭州:浙江工业大学,2013.Yu Gan.Study on removal of carbon dioxide from biogas by chemical absorption/pressure swing adsorption[D].Hangzhou:Zhejiang University of Technology,2013.
    [8]Ofori-Boateng C&Kwofie E.Water scrubbing:A better option for biogas purification for effective storage[J].World Applied Science Journal,2009,5(3):122-125.
    [9]Rasi S,L?ntel?J&Rintala J.Upgrading landfill gas using a high pressure water absorption process[J].Fuel,2014,115:539-543.
    [10]Zhu Lin,He Yangdong,Li Luling&Wu Pengbin.Tech-economic assessment of second-generation CCS:Chemical looping combustion[J].Energy,2018,144:915-927.
    [11]Ding Xiaoli,Hua Mingming,Zhao Hongyong,Yang Pingping,Chen Xiaolu,Xin Qingping,et al.Poly(ethylene oxide)composite membrane synthesized by UV-initiated free radical photopolymerization for CO2 separation[J].Journal of Membrane Science,2017,531:129-137.
    [12]Dashti H,Zhehao YL&Lou Xia.Recent advances in gas hydrate-based CO2 capture[J].Journal of Natural Gas Science and Engineering,2015,23:195-207.
    [13]Wei Na,Sun Wantong,Meng Yingfeng,Zhou Shouwei,Li Gao,Guo Ping,et al.Sensitivity analysis of multiphase flow in annulus during drilling of marine natural gas hydrate reservoirs[J].Journal of Natural Gas Science and Engineering,2016,36:692-707.
    [14]Zhou Shouwei,Zhao Jinzhou,Li Qingping,Chen Wei,Zhou Jianliang,Wei Na,et al.Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization[J].Natural Gas Industry B,2018,5(2):118-131.
    [15]Liu Huang,Zhan Siyuan,Guo Ping,Fan Shuanshi&Zhang Senlin.Understanding the characteristic of methane hydrate equilibrium in materials and its potential application[J].Chemical Engineering Journal,2018,349:775-781.
    [16]Vavder Woala JH&Platteuw JC.Clathrate Solutions[J].Advances Chemical Physics,1959,2(1):1-57.
    [17]Herslund PJ,Thomsen K,Abildskov J&Solms VN.Phase equilibrium modeling of gas hydrate systems for CO2 capture[J].The Journal of Chemical Thermodynamics,2012,48:13-27.
    [18]Zhang Yi,Yang Mingjun,Song Yongchen,Jiang Lanlan,Li Yanghui&Cheng Chuanxiao.Hydrate phase equilibrium measurements for(THF+SDS+CO2+N2)aqueous solution systems in porous media[J].Fluid Phase Equilibria,2014,370:12-18.
    [19]Herri JM,Bouchemoua A,Kwaterski M,Fezoua A,Ouabbas Y&Cameirao A.Gas hydrate equilibria for CO2-N2 and CO2-CH4gas mixtures--experimental studies and thermodynamic modelling[J].Fluid Phase Equilibria,2011,301(2):171-190.
    [20]Liu Huang,Guo Ping,Du Jianfen,Wang Zhouhua,Chen Guangjin&Li Yun.Experiments and modeling of hydrate phase equilibrium of CH4/CO2/H2S/N2 quaternary sour gases in distilled water and methanol-water solutions[J].Fluid Phase Equilibria,2017,432:10-17.
    [21]Li Zhidong&Firoozabadi A.Cubic-plus-association equation of state for water-containing mixtures:Is"cross association"necessary[J].AIChE Journal,2009,55(7):1803-1813.
    [22]Parrish WR&Prausnitz JM.Dissociation pressures of gas hydrates formed by gas mixtures[J].Industrial&Engineering Chemistry Process Design and Development,1972,11(1):26-35.
    [23]Saito S,Marshall DR&Kobayashi R.Hydrates at high pressures:Part II.Application of statistical mechanics to the study of the hydrates of methane,argon,and nitrogen[J].AIChE Journal,1964,10(5):734-740.
    [24]Austegard A,Solbraa E,Koeijer DG&M?lnvik MJ.Thermodynamic models for calculating mutual solubilities in H2O-CO2-CH4 mixtures[J].Chemical Engineering Research and Design,2006,84(9):781-794.
    [25]Tsivintzelis I,Kontogeorgis GM,Michelsen ML&Stenby EH.Modeling phase equilibria for acid gas mixtures using the CPAequation of state.Part II:Binary mixtures with CO2[J].Fluid Phase Equilibria,2011,306(1):38-56.
    [26]Mathias PM,Naheiri T&Oh EM.A density correction for the Peng-Robinson equation of state[J].Fluid Phase Equilibria,1989,47(1):77-87.
    [27]Li Luling,Fan Shuanshi,Chen Qiuxiong,Yang Guang,Zhao Jinzhou,Wei Na,et al.Simulation of post-combustion CO2 capture process by non-equilibrium stage hydrate-based gas separation technology[J].International Journal of Greenhouse Gas Control,2018,79:25-33.
    [28]Oliveira MB,Coutinho JAP&Queimada AJ.Mutual solubilities of hydrocarbons and water with the CPA EoS[J].Fluid Phase Equilibria,2007,258(1):58-66.
    [29]Ruffine L,Mougin P&Barreau A.How to represent hydrogen sulfide within the CPA equation of state[J].Industrial&Engineering Chemistry Research,2006,45(22):7688-7699.
    [30]Li Luling,Zhu Lin&Fan Junming.The application of CPA-vdWP to the phase equilibrium modeling of methane-rich sour natural gas hydrates[J].Fluid Phase Equilibria,2016,409:291-300.
    [31]Sabil KM,Witkamp GJ&Peters CJ.Phase equilibria in ternary(carbon dioxide+tetrahydrofuran+water)system in hydrate-forming region:Effects of carbon dioxide concentration and the occurrence of pseudo-retrograde hydrate phenomenon[J].The Journal of Chemical Thermodynamics,2010,42(1):8-16.
    [32]Ruffine L&Trusler JPM.Phase behaviour of mixed-gas hydrate systems containing carbon dioxide[J].The Journal of Chemical Thermodynamics,2010,42(5):605-611.
    [33]Jhaveri J&Robinson DB.Hydrates in the methane-nitrogen system[J].The Canadian Journal of Chemical Engineering,1965,43(2):75-78.
    [34]Cleeff VA&Diepen GAM.Gas hydrates of nitrogen and oxygen-[J].Recueil des Travaux Chimiques des Pays-Bas,1960,79(6):582-586.
    [35]Cleeff VA&Diepen GAM.Gas hydrates of nitrogen and oxygen.II[J].Recueil des Travaux Chimiques des Pays-Bas,1965,84(8):1085-1093.
    [36]Kang SP,Lee H,Lee CS&Sung WM.Hydrate phase equilibria of the guest mixtures containing CO2,N2 and tetrahydrofuran[J].Fluid Phase Equilibria,2001,185(1/2):101-109.
    [37]Sun Shicai,Liu Changling&Meng Qingguo.Hydrate phase equilibrium of binary guest-mixtures containing CO2 and N2 in various systems[J].The Journal of Chemical Thermodynamics,2015,84:1-6.
    [38]Herslund PJ,Thomsen K,Abildskov J&Solms VN.Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes[J].Fluid Phase Equilibria,2014,375:45-65.
    [39]Herslund PJ,Thomsen K,Abildskov J&Solms VN.Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes[J].Fluid Phase Equilibria,2014,375:89-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700