用户名: 密码: 验证码:
CO_2封存泄漏大气扩散规律及监测方案——以延长油田CO_2-EOR工程为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dispersion features of the atmospheric monitoring program for CO_2 leakage——a case study sample of the CO_2-EOR pilot project of Yanchang Oil Field
  • 作者:朱前林 ; 范智涵 ; 王闯 ; 黄春霞 ; 汤瑞佳
  • 英文作者:ZHU Qian-lin;FAN Zhi-han;WANG Chuang;HUANG Chun-xia;TANG Rui-Jia;School of Resources and Geosciences,China University of Mining and Technology;Key Laboratory of Coal-based CO2 Capture and Geological Storage;Research Institute of Yanchang Petroleum Group;
  • 关键词:安全工程 ; CO2地质封存 ; CO2泄漏 ; 重气扩散模型 ; 大气监测
  • 英文关键词:safety engineering;;CO2 geological storage;;CO2 leakage;;denser-than-air dispersion model;;atmos pheric monitoring
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:中国矿业大学资源学院;江苏省煤基CO2捕集与地质封存重点实验室;延长石油集团研究院;
  • 出版日期:2018-08-25
  • 出版单位:安全与环境学报
  • 年:2018
  • 期:v.18;No.106
  • 基金:国家重点研发计划项目(2016YFE0102500);; 国家自然科学基金项目(41702248);; 江苏省煤基CO2捕集与地质封存重点实验室开放基金项目(2015A06)
  • 语种:中文;
  • 页:AQHJ201804034
  • 页数:8
  • CN:04
  • ISSN:11-4537/X
  • 分类号:201-208
摘要
针对延长油田CO_2-EOR项目的潜在泄漏问题,根据当地气象环境条件,利用重气扩散模型研究了CO_2泄漏运移特征,并以此为依据,讨论了该工况条件下CO_2泄漏的大气监测方案。结果表明:CO_2喷射泄漏后先上升后下降,并沿着下风向运移;在研究区优势风速2.7 m/s条件下,喷射高度与最大CO_2体积分数点高度随泄漏速度增加而上升;CO_2顺风向运移距离大于侧风向运移距离,且泄漏的地表影响范围随泄漏速度增加呈近似线性增加;泄漏速度3 kg/s时开始出现危险区域,且大于该泄漏速率时,地表危险区面积随泄漏速度增加呈抛物线变化;监测点应位于距离泄漏源下风向50~80 m处,在监测高度0~4 m范围内,CO_2监测半宽相对稳定且较大,约为12 m,当监测高度大于4 m时,监测范围明显减小;考虑到监测点预警功能,认为研究区大气监测需要在潜在泄漏源的西北和正南方向50 m处、高度为0~4 m范围内各设置1个CO_2大气监测点,该监测方案可根据现场最大泄漏量预估值及监测预警要求,适当减小与潜在泄漏源的距离。
        The present paper has been engaged in a study of thedispersion features of the potential CO_2 leakage in the CO_2-EOR pilot project of Yanchang Oil Field( Shaanxi) through a denserthan-air dispersion model based on the environmental conditions and discussions of the corresponding atmospheric monitoring program. The results of our study demonstrate that,the leaked CO_2 tends to move upwards first in the wind direction and then begins to decline in the horizontally progressing way. Under the environment condition with a dominant wind-blowing velocity of 2. 7 m/s,the height of the maximum ejection and the maximum concentration increase with the leakage rate increasing. The principal features of the CO_2 cloud can be described in the following manners: its maximum ejection height is 7 m with its maximum concentration being at a height of 4. 5 m. What is more,when its leakage rate is 20 kg/s,its maximum ejection height reaches 38 m,while its maximum concentration can reach a height of 27 m at a leakage rate of 120 kg/s. Additionally,the dispersion distance in the downwind direction is much greater than that in the crosswind direction. As to the relation of the CO_2 cloud to the people involved,it can be said that the area of the CO_2 volume fraction affecting people's health tends to increase almost in a linear way with the leakage rates increasing. The area of the CO_2 volume fraction bringing harm to people's health appears when leakage rate is greater than 3 kg/s. When leakage rates is greater than the said 3 kg/s,the sphere increases almost parabolically with the leakage rate increasing,with an apex of the parabola locating at the leakage rate of 70 kg/s. The corresponding dangerous area can be predicted to be a sphere of 6 350 m2. Furthermore,the monitoring sites should be 50-80 m away from the potential leakage point in the downwind direction,the monitoring height should be in a range of 0-4 m,where the half width of the atmospheric monitoring turn to be relatively stable at about 12 m. In so doing,the area to be detected of the leaked CO_2 can in turn decrease with the increase of the monitoring height in case when the monitoring height is greater than 4 m,with half of the width of the atmospheric monitoring range being reduced from 10 m at the monitoring height of 5 m to that of 2 m at the monitoring height of 8 m.Taking into account the early warning function of the atmospheric monitoring according to the dominant wind direction of the aforementioned research area,two monitoring sites are to be recommended at a height of 0-4 m,by choosing two sites of 50 m far from the potential CO_2 leakage point in the northwest and south,respectively. And,in turn,it would be possible to modify the distance from the monitoring sites to the potential leakage points in accordance with the estimated maximum leakage rate and the demands of the early warning to be done.
引文
[1]LI Xiaoru(李肖如),XIE Huasheng(谢华生),KOU Wen(寇文),et al.Discussion and case study on the CO2emission calculation methods in iron and steel industry[J].Journal of Safety and Environment(安全与环境学报),2016,16(5):320-324.
    [2]CHENG Liping(程丽平),YI Jianxin(易建新),LI Didi(李迪迪),et al.Numerical study for enhancing the dissolution of supercritical CO2by water injection into the saline aquifer[J].Journal of Safety and Environment(安全与环境学报),2017,17(1):309-314.
    [3]LIANG X,REINER D M.The evolution of stakeholder perceptions of deploying CCS technologies in China:survey results from three stakeholder consultations in 2006,2009 and 2012[J].Energy Procedia,2013,37:7361-7368.
    [4]LI Q,CHEN Z A,ZHANG J T,et al.Positioning and revision of CCUS technology development in China[J].International Journal of Greenhouse Gas Control,2016,46:282-293.
    [5]DUNCAN I J,NICOT J P,CHOI J W.Risk assessment for future CO2sequestration projects based CO2enhanced oil recovery in the U.S.[J].Energy Procedia,2009,1(1):2037-2042.
    [6]LANGSTON M V,HOADLEY S F,YOUNG D N.Definitive CO2flooding response in the SACROC Unit[C]//SPE Enhanced Oil Recovery Symposium.Tulsa,Oklahoma,USA:Society of Petroleum Engineers,1988.
    [7]CAI Bofeng(蔡博峰).Carbon dioxide geologic sequestration and environmental monitoring[J].Environmental Economics(环境经济),2012(8):44-49.
    [8]AINES R D,LEACH M J,WEISGRABER T H,et al.Quantifying the potential exposure hazard due to energetic releases of CO2from a failed sequestration well[J].Energy Procedia,2009,1(1):2421-2429.
    [9]KONSTANTINOVSKAYA E,RUTQVIST J,MALO M.CO2storage and potential fault instability in the St.Lawrence Lowlands sedimentary basin(Quebec,Canada):insights from coupled reservoirgeomechanical modeling[J].International Journal of Greenhouse Gas Control,2014,22:88-110.
    [10]MA Xin(马鑫),LI Yilian(李义连),YANG Guodong(杨国栋),et al.Impact of the Uncertaines of caprocks on the security of CO2geological storage[J].Safety ang Environmrntal Engineering(安全与环境工程),2013,20(4):45-50.
    [11]REN Shaoran(任韶然),LI Dexiang(李德祥),ZHANG Liang(张亮),et al.Leakage pathways and risk analysis of carbon dioxide in geological storage[J].Acta Petrolei Sinica(石油学报),2014,35(3):591-601.
    [12]ZHU Q L,LI X C,JIANG Z B,et al.Impacts of CO2leakage into shallow formations on groundwater chemistry[J].Fuel Processing Technology,2015,135(S1):162-167.
    [13]WU Yang(伍洋),MA Xin(马欣),LI Yu'e(李玉娥),et al.Impact assessment and tolerable threshold value of CO2leakage from geological storage onagro-ecosystem[J].Transactions of the CSAE(农业工程学报),2012,28(2):196-205.
    [14]WANG Lidong(汪黎东),DUN Xiaobao(顿小宝),ZHANG Tianying(张天赢),et al.Risk assessment and modeling of CO2leakage from single well in geological sequestration process[J].Environmental Protection of Chemical Industry(化工环保),2013,33(1):76-79.
    [15]LI Yi(李毅),ZHANG Keni(张可霓),WANG Xiaoyu(王笑雨).Assessment of the impact on shallow groungwater system by leakage of CO2geological storage[J].Geotechnical Investigation&Surveying(工程勘察),2014,42(11):44-50.
    [16]LI Qi(李琦),SHI Hui(石晖),YANG Duoxing(杨多兴).Classification of hazard levels of carbon dioxide dispersion under a well blowout in a CCS project[J].Rock and Soil Mechanics(岩土力学),2016,37(7):2070-2078.
    [17]LEUNING R,ETHERIDGE D,LUHAR A,et al.Atmospheric monitoring and verification technologies for CO2geosequestration[J].International Journal of Greenhouse Gas Control,2008,2(3):401-414.
    [18]LOH Z,LEUNING R,ZEGELIN S,et al.Testing Lagrangian atmospheric dispersion modelling to monitor CO2and CH4leakage from geosequestration[J].Atmospheric Environment,2009,43(16):2602-2611.
    [19]PEKNEY N,WELLS A,DIEHL J R,et al.Atmospheric monitoring of a perfluorocarbon tracer at the 2009 ZERT Center experiment[J].Atmospheric Environment,2012,47:124-132.
    [20]WANG Weibo(王维波),HUANG Chunxia(黄春霞),JIANGShaojing(江邵静),et al.Surface injection technology for CO2flooding and sequestration[J].Petroleum Engineering Construction(石油工程建设),2015,41(2):40-42.
    [21]WANG Weibo(王维波),SHI Qingsan(师庆三),YU Huagui(余华贵),et al.Optimization experiment for carbon dioxide flooding injection mode[J].Fault-Block Oil&Gas Field(断块油气田),2015,22(4):497-500.
    [22]TAO Q,ALEXANDER D,BRYANT S L.Development and field application of model for leakage of CO2along a fault[J].Energy Procedia,2013,37:4420-4427.
    [23]FAISAL I K,ABBASI S A.Modelling and control of the dispersion of hazardous heavy gases[J].Journal of Loss Prevention in the Process Industries,1999,12(3):235-244.
    [24]BLEWITT D,YOHN J,ERMAK D.An evaluation of SLAB and DEGADIS heavy gas dispersion models using the HF spill test data[R].San Francisco:Lawrence Livermore National Laboratory,1987.
    [25]ERMAK D.Uer’s manual for SLAB:an atmospheric dispersion model for denser than air release[R].San Francisco:Lawrence Livermore National Laboratory,1997.
    [26]DIAZ-OVALLE C,VAZQUEZ-ROMAN R,LESSO-ARROYO R,et al.A simplified steady-state model for air,water and steam curtains[J].Journal of Loss Prevention in the Process Industries,2012,25(6):974-981.
    [27]LEWICKI J L,BIRKHOLZER J,TSANG C F.Natural and industrial analogues for leakage of CO2from storage reservoirs:identification of features,events,and processes and lessons learned[J].Environmental Geology,2006,52(3):457-467.
    [28]MONSE C,BRODING H C,SUCKER K,et al.Exposure assessment of potash miners at elevated CO2levels[J].International Archives of Occupational and Environmental Health,2014,87(4):413-421.
    [29]LI Q,SHI H,YANG D X,et al.Modeling the key factors that could influence the diffusion of CO2from a wellbore blowout in the Ordos Basin,China[J].Environmental Science&Pollution Research,2017,24(4):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700