用户名: 密码: 验证码:
液滴撞击固体表面过程的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study of droplets impacting on a solid surface
  • 作者:陈烽 ; 王登飞 ; 蔡子琦 ; 高正明 ; 刘新卫
  • 英文作者:CHEN Feng;WANG DengFei;CAI ZiQi;GAO ZhengMing;LIU XinWei;College of Chemical Engineering, Beijing University of Chemical Technology;Daqing Chemical Research Center, Petrochemical Research Institute, China National Petroleum Corporation;College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology;
  • 关键词:液滴 ; 撞击 ; 铺展特性 ; 黏性耗散
  • 英文关键词:droplet;;impact;;spreading characteristics;;viscous dissipation
  • 中文刊名:BJHY
  • 英文刊名:Journal of Beijing University of Chemical Technology(Natural Science Edition)
  • 机构:北京化工大学化学工程学院;中国石油天然气股份有限公司石油化工研究院大庆化工研究中心;北京化工大学机电工程学院;
  • 出版日期:2019-07-20
  • 出版单位:北京化工大学学报(自然科学版)
  • 年:2019
  • 期:v.46
  • 基金:国家自然科学基金(21676007);; 中国石油天然气股份有限公司科学研究与技术开发项目(2016B-2605)
  • 语种:中文;
  • 页:BJHY201904003
  • 页数:10
  • CN:04
  • ISSN:11-4755/TQ
  • 分类号:16-25
摘要
对液滴撞击固体表面的过程进行实验研究,考察液滴的物性和操作条件对撞击过程的影响,结果表明:随着液滴黏度的增加、或表面张力系数的增大、或撞击速度的减小,液滴的铺展直径、铺展速度和铺展面积均减小;液滴的能量在黏性中的耗散主要发生在撞击的初始阶段,随着液滴黏度的增加、或表面张力系数的减小、或撞击速度的增大,黏性耗散的速率均增加。本文得到的关于液滴雷诺数和韦伯数的关联式可用于预测液滴的最大铺展直径和最大铺展面积。
        An experimental study of droplets impacting on a solid surface had been carried out in order to investigate the influence of the physical properties of the droplets and operating conditions on the impact process.The results show that as the viscosity of the droplet increases, the surface tension coefficient increases, or the impact velocity decreases, the spreading diameter, spreading speed and spreading area of the droplet all decrease. The dissipation of the energy of the droplet mainly occurs in the initial stage of the impact.As the viscosity of the droplet increases, the surface tension coefficient decreases, or the impact velocity increases, the rate of viscous dissipation increases. The correlations with the Reynolds number and the Weber number of the droplets obtained in this work can be used to predict the maximum spreading diameter and the maximum spreading area of the droplet.
引文
[1] 王强,郑宏飞,厉彦忠.横管降膜蒸发太阳能海水淡化装置的性能分析 [J].太阳能学报,2003,24(3):302- 306.WANG Q,ZHENG H F,LI Y Z.The performance analysis on horizontal tube falling film evaporation solar desalination unit [J].Acta Energiae Solaris Sinica,2003,24(3):302- 306.(in Chinese)
    [2] 祝杰,吴振元,叶世超,等.喷淋塔内液滴运动及分布特性的研究[J].化工与医药工程,2014,35(2):11- 15.ZHU J,WU Z Y,YE S C,et al.Research on characteristics of droplet motion and distribution in spray tower [J].Chemical and Pharmaceutical Engineering,2014,35(2):11- 15.(in Chinese)
    [3] LI N,ZHOU Q L,CHEN X,et al.Liquid drop impact on solid surface with application to water drop erosion on turbine blades,Part Ⅰ:Nonlinear wave model and solution of one-dimensional impact[J].International Journal of Mechanical Sciences,2008,50(10/11):1526- 1542.
    [4] AI T,MUDASSAR A M,CAI Z Q,et al.Liquid dispersion and gas absorption in a multi stage high speed disperser [J].Chemical Engineering Journal,2018,352:704- 715.
    [5] MAO T,KUHN D C S,TRAN H.Spread and rebound of liquid droplets upon impact on flat surfaces [J].AIChE Journal,1997,43(9):2169- 2179.
    [6] ZHANG X G,BASARAN O A.Dynamic surface tension effects in impact of a drop with a solid surface [J].Journal of Colloid and Interface Science,1997,187(1):166- 178.
    [7] 李维仲,朱卫英,权生林,等.液滴撞击水平固体表面的可视化实验研究[J].热科学技术,2008,7(2):155- 160.LI W Z,ZHU W Y,QUAN S L,et al.Visual experimental study on droplet impacted onto horizontal solid surface [J].Journal of Thermal Science and Technology,2008,7(2):155- 160.(in Chinese)
    [8] 崔洁,陆军军,陈雪莉,等.液滴高速撞击固体板面过程的研究[J].化学反应工程与工艺,2008,24(5):390- 394.CUI J,LU J J,CHEN X L,et al.Study of liquid droplet impacting on a solid surface with high velocity [J].Chemical Reaction Engineering and Technology,2008,24(5):390- 394.(in Chinese)
    [9] AN S M,LEE S Y.Maximum spreading of a shear thinning liquid drop impacting on dry solid surfaces [J].Experimental Thermal and Fluid Science,2012,38:140- 148.
    [10] ABOUD D G K,KIETZIG A M.Splashing threshold of oblique droplet impacts on surfaces of various wettability [J].Langmuir,2015,31(36):10100- 10111.
    [11] CHANDRA S,AVEDISIAN C T.On the collision of a droplet with a solid surface [J].Proceedings of the Royal Society of London.Series A:Mathematical,Physical and Engineering Sciences,1991,432(1884):13- 41.
    [12] PASANDIDEH-FARD M,QIAO Y M,CHANDRA S,et al.Capillary effects during droplet impact on a solid surface [J].Physics of Fluids,1996,8(3):650- 659.
    [13] ?IKALO ?,WILHELM H D,ROISMAN I V,et al.Dynamic contact angle of spreading droplets:experiments and simulations [J].Physics of Fluids,2005,17(6):062103.
    [14] LUNKAD S F,BUWA V V,NIGAM K D P.Numerical simulations of drop impact and spreading on horizontal and inclined surfaces [J].Chemical Engineering Science,2007,62(24):7214- 7224.
    [15] WANG Y X,CHEN S.Droplets impact on textured surfaces:mesoscopic simulation of spreading dynamics [J].Applied Surface Science,2015,327:159- 167.
    [16] SCHELLER B L,BOUSFIELD D W.Newtonian drop impact with a solid surface [J].AIChE Journal,1995,41(6):1357- 1367.
    [17] CLANET C,BéGUIN C,RICHARD D,et al.Maximal deformation of an impacting drop [J].Journal of Fluid Mechanics,2004,517:199- 208.
    [18] ROISMAN I V.Inertia dominated drop collisions.II.An analytical solution of the Navier-Stokes equations for a spreading viscous film [J].Physics of Fluids,2009,21(5):052104.
    [19] CHEN R H,WANG H W.Effects of tangential speed on low-normal-speed liquid drop impact on a non-wettable solid surface[J].Experiments in Fluids,2005,39(4):754- 760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700