用户名: 密码: 验证码:
一种基于内潮动力特征的浅海声速剖面构建新方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A noval method of constructing shallow water sound speed profile based on dynamic characteristic of internal tides
  • 作者:屈科 ; 朴胜春 ; 朱凤芹
  • 英文作者:Qu Ke;Piao Sheng-Chun;Zhu Feng-Qin;Acoustic Science and Technology Laboratory,Harbin Engineering University;Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University),Ministry of Industry and Information Technology;College of Underwater Acoustic Engineering, Harbin Engineering University;Guangdong Ocean University,Guangdong Key Laboratory of Coastal Ocean Variation and Disaster Prediction;
  • 关键词:声速剖面 ; 声层析 ; 水动力模式基函数 ; 反演
  • 英文关键词:sound speed profile;;acousic tomography;;hydrodynamic mode bases;;inversion
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:哈尔滨工程大学水声技术重点实验室;海洋信息获取与安全工信部重点实验室(哈尔滨工程大学)工业和信息化部;哈尔滨工程大学水声工程学院;广东海洋大学广东省近海海洋变化与灾害预警重点实验室;
  • 出版日期:2019-06-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:41406041);; 广东省自然科学基金(批准号:2014A030310256);; 广东海洋大学优秀青年教师资助(批准号:HDYQ2015010)资助的课题~~
  • 语种:中文;
  • 页:WLXB201912015
  • 页数:11
  • CN:12
  • ISSN:11-1958/O4
  • 分类号:142-152
摘要
为了降低反演参数空间的维数,常利用正交经验函数(EOF)来构建声速剖面.然而,EOF方法的样本依赖性使之难以用于缺乏现场实测数据的海域.本文提出一种全新的利用历史数据而不依靠现场实时数据即可获得的声速剖面展开基函数.基于水质子流体静力方程和物态方程,推导了在缺乏实时测量的情况下从历史数据获得水动力模式基函数(HMB)的办法.利用WOA13季节平均温盐数据获得代表内潮动力特征的HMB进行分析.较之EOF, HMB及其对应的投影系数与海洋动力特征直接相关并具有明确的物理含义.基于东中国海实验获得的CTD (conductance-temperature-depth)及宽带爆炸声源声信号数据,利用声速剖面重构以及匹配场声层析对HMB进行了分析,并与EOF进行对比研究.结果表明:HMB可以以较好的精度构建浅海声速剖面.在对现场实时测量依赖更小的情况下,基于HMB方法的声场预报及声层析结果与EOF方法一样好.HMB的获取更简单且直接关联海水的物理特性,该方法可在实时测量样本不足的海域有效替代EOF进行海洋动力现象的声学监测.
        In order to provide constraint to the number of inversion parameters, sound speed profile is often modeled by empirical orthogonal functions(EOFs). However, the EOF method, which is dependent on the sample data,is often difficult to apply due to insufficient real-time in-situ measurements. In this paper, we present a novel basis for reconstructing the sound speed profile, which can be obtained by using historical data without realtime sample. By deducing the dynamic equations and the state function of water particle, the hydrodynamic mode bases(HMBs) can be calculated from historical data without real-time in-situ measurement, and a method of constructing the sound speed profile is established by using the dynamic characteristics of seawater.The use of the World Ocean Atlas 2013(WOA13) can obtain the seasonal profiles of temperature and salinity,and then the HMB which represents the dynamic characteristic of internal tides is obtained and analyzed.Unlike EOF, the HMB and its projection coefficients are directly related to the sea dynamic features and have a more explicit physical meaning. According to the orthogonality analysis of hydrodynamic mode, the first-order coefficient can be used to describe the depth change of sound speed iso-lines and the second-order coefficient can be used to describe the change of sound speed gradient. Based on the conductance-temperature-depth profiles and broadband data from underwater explosion collected in the East China Sea experiment of the Asian Seas International Acoustic Experiment, the HMB is tested and compared with the EOF in the sound speed profile reconstruction and matched field tomography. The results show that the sound speed profile in shallow water area can be expressed by the HMB with proper precision. By means of the conventional matched field tomography, the valid sound speed profile can also be obtained in the form of HMB coefficients. The result of transmission loss prediction and tomography from HMB are as good as those from EOF, while the HMB has less dependent on real-time in-situ measurement. The HMB is easy to obtain and closely related to the physical characteristics of seawater, it can be used as an efficient alternative to EOF for monitoring the marine dynamic phenomena in sea areas with insufficient real-time in-situ measurement.
引文
[1] Yang T C, Huang C F, Huang S H, Liu J Y 2017 IEEE J.Ocean. Eng. 42 663
    [2] Turgut A, Mignerey P C, Goldstein D J, Schindall J A 2013J. Acoust. Soc. Am. 133 1981
    [3] Liu J Z, Gao D Z, Wang N 2009 Sci. China G 39 719(in Chinese)[刘进忠,高大治,王宁2009中国科学G辑39 719]
    [4] Bianco M, Gerstoft P 2017 J. Acoust. Soc. Am. 141 1749
    [5] Huang C F, Gerstoft P, Hodgkiss W S 2008 J. Acoust. Soc.Am. 123 162
    [6] Taroundakis M I, Papadakis J S 1993 J. Computat. Acoust. 1395
    [7] Li Z L, He L, Zhang R H, Li F H, Yu Y X, Lin P 2015 Sci.China:Phys. Mech. Astron. 58 1
    [8] Zhang W, Yang S E, Huang Y W, Tang J F, Song Y 2012 J.Vib. Shock 31 6(in Chinese)[张维,杨士莪,黄益旺,唐俊峰,宋扬2012振动与冲击31 6]
    [9] Li F H, Zhang R H 2010 Chin. Phys. Lett. 27 084303
    [10] He L, Li Z L, Peng Z H, Wu L X, Liu J J 2011 Sci. China:Phys.Mech. Astron. 41 49(in Chinese)[何利,李整林,彭朝晖,吴立新,刘建军2011中国科学:物理学力学天文学41 49]
    [11] Li J, Yang K D, Lei B, He Z Y 2012 Acta Phys. Sin. 61084301(in Chinese)[李佳,杨坤德,雷波,何正耀2012物理学报61 084301]
    [12] Zhang X, Zhang Y G, Zhang J X, Nie B S, Yao Z S 2010Adv.Marine Sci. 28 498(in Chinese)[张旭,张永刚,张健雪,聂邦胜,姚忠山2010海洋科学进展28 498]
    [13] Jensen J K, Hjelmervik K T,stenstad P 2012 IEEE J.Ocean. Eng. 37 103
    [14] Hjelmervik K, Hjelmervik K T 2014 Ocean Dyn. 64 655
    [15] Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys.Sin. 66 094302(in Chinese)[李晓曼,张明辉,张海刚,朴胜春,刘亚琴,周建波2017物理学报66 094302]
    [16] Su L, Ma L, Song W H, Guo S M, Lu L C 2015 Acta Phys.Sin.64 024302(in Chinese)[苏林,马力,宋文华,郭圣明,鹿力成2015物理学报64 024302]
    [17] Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 901410
    [18] Munk W H 1974 J. Acoust. Soc. Am. 55 220
    [19] Teague W J, Carron M J, Hogan P J 1990 J. Geophys. Res.Oceans 95 7167
    [20] Zhang X, Zhang Y G, Zhang J X, Dong N 2011 ActaOceanol.Sin.33 54(in Chinese)[张旭,张永刚,张健雪,董楠2011海洋学报33 54]
    [21] oyer T P, Antonov J I, Baranova O K, Coleman C, Garcia H E, Grodsky A, Johnson D R, Locarnini R A, Mishonov A V,O'Brien T D, Paver C R, Reagan J R, Seidov D, Smolyar I V,Zweng M M https://repository.library.noaa.gov/view/noaa/1291[2018-4-19]
    [22] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011Computational Ocean Acoustics(New York:Springer)p64
    [23] Cai S Q 2015 Internal Solitons Numerical Model and Its Application in the South China Sea(Beijing:Ocean Press)p10(in Chinese)[蔡树群2015内孤立波数值模式及其在南海区域的应用(北京:海洋出版社)第10页]
    [24] Guo S M, Hu T 2010 J. Harbin Engin. Univ. 31 967(in Chinese)[郭圣明,胡涛2010哈尔滨工程大学学报31 967]
    [25] Cui M C, Qiao F L, Mo J, Guo B H 2002 Acta Oceanol. Sin.24 127(in Chinese)[崔茂常,乔方利,莫军,郭炳火2002海洋学报24 127]
    [26] Song W H, Hu T, Guo S M, Ma L, Lu L C 2014 Acta Acust.39 11(in Chinese)[宋文华,胡涛,郭圣明,马力,鹿力成2014声学学报39 11]
    [27] Dahl P H, Zhang R, Miller J H, Bartek L R, Peng Z, Ramp S R, Zhou J X, Chiu C S, Lynch J F, Simmen J A 2004 IEEE J. Ocean. Eng. 29 920
    [28] He L, Li Z L, Zhang R H, Li F H 2006 Prog. Natural Sci. 16351(in Chinese)[何利,李整林,张仁和,李风华2006自然科学进展16 351]
    [29] Gerstoft P 1994 J. Acoust. Soc. Am. 95 770

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700