用户名: 密码: 验证码:
细胞表面聚糖标记研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advances in glycan labeling on cell surface
  • 作者:李晨 ; 周志昉 ; 吴志猛
  • 英文作者:LI Chen;ZHOU ZhiFang;WU ZhiMeng;Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University;
  • 关键词:代谢糖工程标记 ; 化学酶法标记 ; 聚糖
  • 英文关键词:metabolic oligosaccharide engineering;;chemoenzymatic glycan labeling;;glycan
  • 中文刊名:JCXK
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:江南大学生物工程学院糖化学与生物技术教育部重点实验室;
  • 出版日期:2019-02-19 16:06
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(批准号:21472070,21602084);; 中央高校自主科研计划青年基金(批准号:JUSRP11729);; 国家“111计划”(批准号:111-2-06)资助
  • 语种:中文;
  • 页:JCXK201905004
  • 页数:12
  • CN:05
  • ISSN:11-5840/Q
  • 分类号:29-40
摘要
细胞表面聚糖与细胞的多种生理过程密切相关,是目前生命科学研究的热点之一.聚糖的糖链结构十分复杂,其合成没有直接的基因模板,且糖类化合物难以标记和检测,这些原因导致聚糖的研究面临着巨大的挑战.近年来,基于代谢糖工程和化学酶法聚糖标记策略的迅速发展,为糖生物学研究提供了重要的聚糖标记手段.这两种策略分别通过代谢糖工程和化学酶法将具有化学报告基团的非天然糖类似物标记在聚糖结构上,并通过生物正交反应对这些聚糖结构进行研究.本文主要总结了两种策略近几年的进展,分析了两种方法各自的优缺点,并探讨了两种策略在糖生物学研究中的应用和未来发展的潜力.
        Glycans on the cell surface playing important roles in many biological activities have drawn increasing interests. These glycans with complex chemical structures are not directly encoded in the genome, which causes the difficulties in labeling and detection.Consequently, it remains great challenges to study the biological functions of glycans. Recently, metabolic oligosaccharide engineering and chemoenzymatic glycan labeling have become powerful tools in glycobiological studies. Both strategies equip the glycans on cell surface with unnatural saccharide precursors carrying chemical reporters which could be further labelled with probes by biorthogonal chemistry. This article reviews current progress in both strategies, analyzes their advantages and disadvantages, and discusses their potential applications in glycobiological studies.
引文
1 Bertozzi C R,Kiessling L L.Chemical glycobiology.Science,2001,291:2357-2364
    2 Dube D H,Bertozzi C R.Metabolic oligosaccharide engineering as a tool for glycobiology.Curr Opin Chem Biol,2003,7:616-625
    3 Lopez Aguilar A,Briard J G,Yang L,et al.Tools for studying glycans:recent advances in chemoenzymatic glycan labeling.ACS Chem Biol,2017,12:611-621
    4 Gorelik E,Galili U,Raz A.On the role of cell surface carbohydrates and their binding proteins(lectins)in tumor metastasis.Cancer Metastasis Rev,2001,20:245-277
    5 Rouhanifard S H,Nordstr?m L U,Zheng T,et al.Chemical probing of glycans in cells and organisms.Chem Soc Rev,2013,42:4284-4296
    6 Freeze H H.Genetic defects in the human glycome.Nat Rev Genet,2006,7:537-551
    7 Palaniappan K K,Bertozzi C R.Chemical glycoproteomics.Chem Rev,2016,116:14277-14306
    8 Ghazarian H,Idoni B,Oppenheimer S B.A glycobiology review:carbohydrates,lectins and implications in cancer therapeutics.Acta Histochem,2011,113:236-247
    9 Manimala J C,Roach T A,Li Z,et al.High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems.Glycobiology,2007,17:17C-23C
    10 Xie R,Hong S,Chen X.Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.Curr Opin Chem Biol,2013,17:747-752
    11 Ovryn B,Li J,Hong S,et al.Visualizing glycans on single cells and tissues-visualizing glycans on single cells and tissues.Curr Opin Chem Biol,2017,39:39-45
    12 Wratil P R,Horstkorte R,Reutter W.Metabolic glycoengineering with N-acyl side chain modified mannosamines.Angew Chem Int Ed,2016,55:9482-9512
    13 Hong S,Lin L,Xiao M,et al.Live-cell bioorthogonal raman imaging.Curr Opin Chem Biol,2015,24:91-96
    14 Pham N D,Parker R B,Kohler J J.Photocrosslinking approaches to interactome mapping.Curr Opin Chem Biol,2013,17:90-101
    15 Pham N D,Fermaintt C S,Rodriguez A C,et al.Cellular metabolism of unnatural sialic acid precursors.Glycoconj J,2015,32:515-529
    16 Bertozzi C R.A decade of bioorthogonal chemistry.Acc Chem Res,2011,44:651-653
    17 Kayser H,Zeitler R,Kannicht C,et al.Biosynthesis of a nonphysiological sialic acid in different rat organs,using N-propanoyl-D-hexosamines as precursors.J Biol Chem,1992,267:16934-16938
    18 Mahal L K,Yarema K J,Bertozzi C R.Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis.Science,1997,276:1125-1128
    19 Whited J,Zhang X,Nie H,et al.Recent chemical biology approaches for profiling cell surface sialylation status.ACS Chem Biol,2018,13:2364-2374
    20 Lin B,Wu X,Zhao H,et al.Redirecting immunity via covalently incorporated immunogenic sialic acid on the tumor cell surface.Chem Sci,2016,7:3737-3741
    21 Xie R,Hong S,Feng L,et al.Cell-selective metabolic glycan labeling based on ligand-targeted liposomes.J Am Chem Soc,2012,134:9914-9917
    22 Wang J,Cheng B,Li J,et al.Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.Angew Chem Int Ed,2015,54:5364-5368
    23 Zaro B W,Yang Y Y,Hang H C,et al.Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase Nedd4-1.Proc Natl Acad Sci USA,2011,108:8146-8151
    24 Chuh K N,Zaro B W,Piller F,et al.Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification.J Am Chem Soc,2014,136:12283-12295
    25 Hang H C,Yu C,Kato D L,et al.A metabolic labeling approach toward proteomic analysis of Mucin-type O-linked glycosylation.Proc Natl Acad Sci USA,2003,100:14846-14851
    26 Becker D J,Lowe J B.Fucose:biosynthesis and biological function in mammals.Glycobiology,2003,13:41R-53R
    27 Woodruff P J,Carlson B L,Siridechadilok B,et al.Trehalose is required for growth of Mycobacterium smegmatis.J Biol Chem,2004,279:28835-28843
    28 Swarts B M,Holsclaw C M,Jewett J C,et al.Probing the mycobacterial trehalome with bioorthogonal chemistry.J Am Chem Soc,2012,134:16123-16126
    29 Lin F L,van Halbeek H,Bertozzi C R.Synthesis of mono-and di-deoxygenatedα,α-trehalose analogs.Carbohydr Res,2007,342:2014-2030
    30 Tapia H,Young L,Fox D,et al.Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae.Proc Natl Acad Sci USA,2015,112:6122-6127
    31 Kamariza M,Shieh P,Bertozzi C R.Imaging mycobacterial trehalose glycolipids.Methods Enzymol,2018,598:355-369
    32 Kamariza M,Shieh P,Ealand C S,et al.Rapid detection of Mycobacterium tuberculosis in sputum with a solvatochromic trehalose probe.Sci Transl Med,2018,10:eaam6310
    33 Rodriguez-Rivera F P,Zhou X,Theriot J A,et al.Acute modulation of mycobacterial cell envelope biogenesis by front-line tuberculosis drugs.Angew Chem Int Ed,2018,57:5267-5272
    34 Rodriguez-Rivera F P,Zhou X,Theriot J A,et al.Visualization of mycobacterial membrane dynamics in live cells.J Am Chem Soc,2017,139:3488-3495
    35 Wu Z,Guo X,Wang Q,et al.Sortase a-catalyzed transpeptidation of glycosylphosphatidylinositol derivatives for chemoenzymatic synthesis of GPI-anchored proteins.J Am Chem Soc,2010,132:1567-1571
    36 Wu Z,Guo X,Gao J,et al.Sortase a-mediated chemoenzymatic synthesis of complex glycosylphosphatidylinositol-anchored protein.Chem Commun,2013,49:11689-11691
    37 Gao J,Zhou Z,Guo J,et al.Synthesis of biotin-labelled core glycans of GPI anchors and their application in the study of GPI interaction with pore-forming bacterial toxins.Chem Commun,2017,53:6227-6230
    38 Lu L,Gao J,Guo Z.Labeling cell surface GPIs and GPI-anchored proteins through metabolic engineering with artificial inositol derivatives.Angew Chem Int Ed,2015,54:9679-9682
    39 Saxon E,Luchansky S J,Hang H C,et al.Investigating cellular metabolism of synthetic azidosugars with the staudinger ligation.J Am Chem Soc,2002,124:14893-14902
    40 Zou W,Borrelli S,Gilbert M,et al.Bioengineering of surface GD3 ganglioside for immunotargeting human melanoma Cells.J Biol Chem,2004,279:25390-25399
    41 Horstkorte R,Lee H Y,Lucka L,et al.Biochemical engineering of the side chain of sialic acids increases the biological stability of the highly sialylated cell adhesion molecule Ceacam1.Biochem Biophys Res Commun,2001,283:31-35
    42 Aich U,Campbell C T,Elmouelhi N,et al.Regioisomeric scfa attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1suppression.ACS Chem Biol,2008,3:230-240
    43 Chang P V,Dube D H,Sletten E M,et al.A strategy for the selective imaging of glycans using caged metabolic precursors.J Am Chem Soc,2010,132:9516-9518
    44 Schottelius M,Laufer B,Kessler H,et al.Ligands for mappingαvβ3-integrin expression in vivo.Acc Chem Res,2009,42:969-980
    45 Xie R,Dong L,Huang R,et al.Targeted imaging and proteomic analysis of tumor-associated glycans in living animals.Angew Chem Int Ed,2014,53:14082-14086
    46 Xie R,Dong L,Du Y,et al.In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy.Proc Natl Acad Sci USA,2016,113:5173-5178
    47 Sun Y,Hong S,Xie R,et al.Mechanistic investigation and multiplexing of liposome-assisted metabolic glycan labeling.J Am Chem Soc,2018,140:3592-3602
    48 Zhou Z,Liao G,Stepanovs S,et al.Quantifying the efficiency of N-phenyl-D-mannosamine to metabolically engineer sialic acid on cancer cell surface.J Carbohydr Chem,2014,33:395-407
    49 Zhou Z,Mondal M,Liao G,et al.Synthesis and evaluation of monophosphoryl lipid a derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers.Org Biomol Chem,2014,12:3238-3245
    50 Qiu L,Li J,Yu S,et al.A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells.Oncotarget,2015,6:5195-5203
    51 Ren X,Evangelista-Leite D,Wu T,et al.Metabolic glycan labeling and chemoselective functionalization of native biomaterials.Biomaterials,2018,182:127-134
    52 Li S,Yu B,Wang J,et al.Biomarker-based metabolic labeling for redirected and enhanced immune response.ACS Chem Biol,2018,13:1686-1694
    53 Sun L,Ishihara M,Middleton D R,et al.Metabolic labeling of HIV-1 envelope glycoprotein gp120 to elucidate the effect of gp120 glycosylation on antigen uptake.J Biol Chem,2018,293:15178-15194
    54 Yuan B,Chen Y,Sun Y,et al.Enhanced imaging of specific cell-surface glycosylation based on multi-FRET.Anal Chem,2018,90:6131-6137
    55 Lee T S,Kim Y,Zhang W,et al.Facile metabolic glycan labeling strategy for exosome tracking.Biochim Biophys Acta,2018,1862:1091-1100
    56 Stockmann H,Todorovic V,Richardson P L,et al.Cell-surface receptor-ligand interaction analysis with homogeneous time-resolved FRET and metabolic glycan engineering:application to transmembrane and GPI-anchored receptors.J Am Chem Soc,2017,139:16822-16829
    57 Paulson J C,Sadler J E,Hill R L.Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases.J Biol Chem,1979,254:2120-2124
    58 Torres C R,Hart G W.Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes.Evidence for O-linked GlcNAc.J Biol Chem,1984,259:3308-3317
    59 Khidekel N,Arndt S,Lamarre-Vincent N,et al.A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications.J Am Chem Soc,2003,125:16162-16163
    60 Yi W,Clark P M,Mason D E,et al.Phosphofructokinase 1 glycosylation regulates cell growth and metabolism.Science,2012,337:975-980
    61 Khidekel N,Ficarro S B,Peters E C,et al.Exploring the O-GlcNAc proteome:direct identification of O-GlcNAc-modified proteins from the brain.Proc Natl Acad Sci USA,2004,101:13132-13137
    62 Clark P M,Dweck J F,Mason D E,et al.Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins.J Am Chem Soc,2008,130:11576-11577
    63 Rexach J E,Rogers C J,Yu S H,et al.Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags.Nat Chem Biol,2010,6:645-651
    64 Rao X,Duan X,Mao W,et al.O-GlcNacylation of G6pd promotes the pentose phosphate pathway and tumor growth.Nat Commun,2015,6:8468
    65 Lopez Aguilar A,Gao Y,Hou X,et al.Profiling of protein O-GlcNAcylation in murine CD8+effector-and memory-like T cells.ACS Chem Biol,2017,12:3031-3038
    66 Wang W,Hu T,Frantom P A,et al.Chemoenzymatic synthesis of GDP-L-Fucose and the Lewis x glycan derivatives.Proc Natl Acad Sci USA,2009,106:16096-16101
    67 Zheng T,Jiang H,Gros M,et al.Tracking N-acetyllactosamine on cell-surface glycans in vivo.Angew Chem Int Ed,2011,50:4113-4118
    68 Varki A.Sialic acids in human health and disease.Trends Mol Med,2008,14:351-360
    69 Wen L,Zheng Y,Jiang K,et al.Two-step chemoenzymatic detection of N-acetylneuraminic acid-α(2-3)-galactose glycans.J Am Chem Soc,2016,138:11473-11476
    70 Wibowo A,Peters E C,Hsieh-Wilson L C.Photoactivatable glycopolymers for the proteome-wide identification of fucose-α(1-2)-galactose binding proteins.J Am Chem Soc,2014,136:9528-9531
    71 Yu L G.The oncofetal Thomsen-Friedenreich carbohydrate antigen in cancer progression.Glycoconj J,2007,24:411-420
    72 Li Q,Li Z,Duan X,et al.A tandem enzymatic approach for detecting and imaging tumor-associated Thomsen-Friedenreich antigen disaccharide.J Am Chem Soc,2014,136:12536-12539
    73 Yu S H,Zhao P,Sun T,et al.Selective exo-enzymatic labeling detects increased cell surface sialoglycoprotein expression upon megakaryocytic differentiation.J Biol Chem,2016,291:3982-3989
    74 Blixt O,Han S,Liao L,et al.Sialoside analogue arrays for rapid identification of high affinity siglec ligands.J Am Chem Soc,2008,130:6680-6681
    75 Mbua N E,Li X,Flanagan-Steet H R,et al.Selective exo-enzymatic labeling of N-Glycans on the surface of living cells by recombinant ST6Gal I.Angew Chem Int Ed,2013,52:13012-13015
    76 Sun T,Yu S H,Zhao P,et al.One-step selective exoenzymatic labeling(SEEL)strategy for the biotinylation and identification of glycoproteins of living cells.J Am Chem Soc,2016,138:11575-11582
    77 Lopez Aguilar A,Meng L,Hou X,et al.Sialyltransferase-based chemoenzymatic histology for the detection of N-and O-glycans.Bioconj Chem,2018,29:1231-1239
    78 Wen L,Liu D,Zheng Y,et al.A one-step chemoenzymatic labeling strategy for probing sialylated Thomsen-Friedenreich antigen.ACS Cent Sci,2018,4:451-457
    79 Briard J G,Jiang H,Moremen K W,et al.Cell-based glycan arrays for probing glycan-glycan binding protein interactions.Nat Commun,2018,9:880
    80 Jiang H,López-Aguilar A,Meng L,et al.Modulating cell-surface receptor signaling and ion channel functions by in situ glycan editing.Angew Chem,2018,130:979-983
    81 Rouhanifard S H,Lopez Aguilar A,Meng L,et al.Engineered glycocalyx regulates stem cell proliferation in murine crypt organoids.Cell Chem Biol,2018,25:439-446.e5
    82 Rodriguez A C,Kohler J J.Recognition of diazirine-modified O-GlcNAc by human O-GlcNAcase.Med Chem Commun,2014,5:1227-1234
    83 Wu Z L,Tatge T J,Grill A E,et al.Detecting and imaging O-GlcNAc sites using glycosyltransferases:a systematic approach to study O-GlcNAc.Cell Chem Biol,2018,25:1428-1435.e3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700