用户名: 密码: 验证码:
道面结构不均匀冻胀水热耦合模型试验及现场验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydro-thermal coupling model test and field validation of uneven frost heave of pavement structure
  • 作者:龙小勇 ; 岑国平 ; 蔡良才 ; 刘垍荧
  • 英文作者:LONG Xiaoyong;CEN Guoping;CAI Liangcai;LIU Jiying;Aeronautics Engineering College, Air Force Engineering University;
  • 关键词:机场道面结构 ; 不均匀冻胀 ; 模型试验 ; 水热耦合 ; 温度梯度 ; 水分迁移
  • 英文关键词:airport pavement structure;;uneven frost heave;;model test;;hydro-thermal coupling;;temperature gradient;;moisture migration
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:空军工程大学航空工程学院;
  • 出版日期:2019-03-11 11:18
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(51578540);; 民航科研专项资金项目(MHRD20140216)
  • 语种:中文;
  • 页:HEBX201903025
  • 页数:7
  • CN:03
  • ISSN:23-1235/T
  • 分类号:178-184
摘要
为更加全面客观地认识机场道面结构的温度场、水分场及其耦合作用的基本规律,为季冻区机场道面结构不均匀冻害的防治提供理论依据和措施建议,设计道面结构不均匀冻胀水热耦合模型试验箱,开展外部水分渗入道肩试验和道面结构不均匀冻胀水热耦合模型试验,并利用现场冻胀量监测结果验证了模型的可靠性和适用性.结果表明:模型试验直观地模拟了跑道与道肩冻胀错台现象,阐明了其产生的原因和机理;揭示了机场道面结构温度场、水分场及其耦合作用的基本规律;外部水分入渗对机场道面结构水分场重分布有较大影响;机场道面结构的不均匀冻害是其内部水热耦合作用的产物,降温速率和温度梯度影响冻结时的水分积聚和迁移,反过来水分的重分布也影响温度的传递.采用室内缩尺物理模型试验和现场监测相结合的研究思路和实施方法不仅为季冻区建筑物不均匀冻胀问题的防治提供了理论基础,也丰富了人们探索水热耦合规律的方法,具有一定的参考价值.
        In order to understand the basic law of temperature field, water field, and the coupling effects of airport pavement structure, and to provide theoretical basis and measure suggestions for the prevention and control of uneven frost heave damage of airport pavement structures in seasonal frozen regions, we designed a test box and conducted the test of external water infiltration and a model test of uneven frost heave of an airport pavement structure. The reliability and applicability of the model were verified by the results of on-site frost heave monitoring. Results showed that the model test intuitively simulated the phenomenon of faulting of slab ends between runway and shoulder with the reasons and mechanism clarified. It objectively revealed the law of temperature field, water field, and the coupling effects of airport pavement structure. The external water infiltration exhibited a great impact on water field redistribution. Uneven frost heave of airport pavement structure is the result of the coupling of temperature field and water field inside the airport pavement structure. The cooling rate and temperature gradient impact the moisture migration and accumulation, and in turn, the water field redistribution affects the delivery of temperature. The research method of combining the physical model test and the on-site monitoring test not only provides a theoretical basis for the prevention and control of the uneven frost heave of the buildings in the frozen area, but also enriches ways of exploring the law of hydro-thermal coupling.
引文
[1] 龙小勇,岑国平,蔡宛彤, 等. 砂砾土地基道面结构不均匀冻胀防治[J]. 空军工程大学学报: 自然科学版, 2018, 1(19): 106 LONG Xiaoyong, CEN Guoping, CAI Wantong, et al. Prevention of uneven frost heave of pavement structure on gravel soil foundation[J]. Journal of Air Force Engineering University: Natural Science Edition, 2018, 1(19): 106
    [2] 刘晓东. 路面容许冻胀与不均匀冻胀[J]. 黑龙江交通科技, 2006, 4: 37 LIU Xiaodong. The facultative frost heave and uneven frost heave of pavement[J]. Journal of Heilongjiang Transportation Science and Technology, 2006, 4: 37
    [3] 刘勇. 哈大高铁轨道变形与路基冻结深度的关系[J]. 铁道建筑, 2016, 10, 79 LIU Yong. Analysis on relationship between frost depth and track deformation for Harbin-Dalian High Speed Railway[J]. Railway Engineering, 2016, 10, 79
    [4] SAARENKETO T, MATINTIPA A, VARIN P. The use of ground penetrating radar, thermal camera and laser scanner technology in asphalt crack detection and diagnostics[C]. 7th RILEM International Conference on Cracking in Pavements. Rovaniemi: Springer, 2012: 137
    [5] ROY L P, BURN C R. A modi?ed landform development model for the topography of drained thermokarst lake basins in fine-grained sediments[J]. Earth Surface Processes and Landforms, 2016, 41: 1504
    [6] WANG T F, LIU J K, TIAN Y D, et al. Frost jacking characteristics of screw piles by model testing[J]. Cold Regions Science and Technology, 2017, 138: 98
    [7] PHILIP J R,VRIES DAD. Moisture movement in porous material under temperature gradient[J]. Eos Transactions American Geophysical Union, 1957, 38: 222
    [8] HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314
    [9] 曹宏章, 刘石. 饱和颗粒土冻结过程的数值模拟[J]. 工程热物理学报, 2007, 1(28): 128 CAO Hongzhang, LIU Shi. Numerical simulation of saturated granular soil freezing process[J]. Journal of Engineering Thermophysics, 2007, 1(28): 128
    [10]JANSSON P E, MOON D S. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J]. Environmental Modelling & Software, 2011, 16(1): 37
    [11]温智, 盛煜, 马巍, 等. 退化性多年冻土地区公路路基地温和变形规律[J]. 岩石力学与工程学报, 2009, 7(28): 1477 WEN Zhi, SHENG Yu, MA Wei, et al. Ground temperature and deformation laws of highway embankments in degenerative permafrost regions [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 7(28): 1477
    [12]温智, 马巍, 薛珂, 等. 基于pF meter 基质势传感器的冻土水分迁移研究[J]. 土壤通报, 2014, 2(45): 370 WEN Zhi, MA Wei, XUE Ke, et al. Studyon moisture migration in frozen soil by soil matric potential sensor [J]. Chinese Journal of Soil Science, 2014, 2(45): 370
    [13]毛雪松, 陈燕琴, 樊宇朔, 等. 基于水热变化的青藏公路路基纵向裂缝现场测试及成因分析[J]. 西安理工大学学报, 2014, 3(30): 340 MAO Xuesong, CHEN Yanqin, FAN Yushuo, et al. The Qinghai-Tibet Highway subgrade longitudinal cracks hydrothermal field testing and cause analysis based on moisture and heat changes[J]. Journal of Xi’an University of Technology, 2014, 3(30): 340
    [14]毛云程, 李国玉, 张青龙, 等. 季节冻土区黄土路基水分与温度变化规律研究[J]. 冰川冻土, 2014, 4(36): 1011 MAO Yuncheng, LI Guoyu, ZHANG Qinglong, et al. Research on the moisture and temperature variation of loess roadbed in seasonally frozen ground regions [J]. Journal of Glaciology and Geocryology, 2014, 4(36): 1011
    [15] KONRAD J M, MOGENSTERN N R. A mechanistic theory of ice lens formation in fine-grained soil[J]. Canadian Geotechnical Journal, 1980, 17: 437
    [16]毛雪松, 胡长顺, 窦明健, 等. 正冻土中水分场和温度场耦合过程的动态观测与分析[J]. 冰川冻土, 2003, 1(25): 55 MAO Xuesong, HU Changshun, DOU Mingjian, et al. Dynamic observation and analysis of moisture and temperature field coupling process in freezing soil[J]. Journal of Glaciology and Geocryology, 2003, 1(25): 55
    [17]赵刚, 陶夏新, 刘兵. 重塑土冻融过程中水分迁移试验研究[J]. 中南大学学报(自然科学版), 2009, 2(40): 519 ZHAO Gang, TAO Xiaxin, LIU Bing. Experimental research on water migration in remoulded soil during freezing and thawing process[J]. Journal of Central South University (Science and Technology), 2009, 2(40): 519
    [18]明锋, 李东庆. 非饱和正冻土一维水热耦合模型与试验[J]. 中南大学学报(自然科学版), 2014, 3(45): 889 MING Feng, LI Dongqing. Modeling and experimental investigation of one dimension coupled moisture and heat inunsaturated freezing soil [J]. Journal of Central South University (Science and Technology), 2014, 3(45): 889
    [19]THOMAS H R, CLEALL P, LI Y C, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Geotechnique, 2009, 59(3): 173
    [20]龙小勇,岑国平,蔡宛彤,等. 压实度及水分对青藏高原季冻区砂砾土冻胀特性的影响[J]. 科技导报,2018, 36(6): 112 LONG Xiaoyong, CEN Guoping, CAI Wantong, et al. Influence of compaction degree and moisture on frost heaving properties of gravel soil in seasonally frozen region of Qinghai-Tibetan Plateau[J]. Science and Technology Review, 2018, 36(6): 112
    [21]岑国平, 龙小勇, 洪刚, 等. 含泥量对砂砾土冻胀特性的影响[J]. 科技导报, 2015, 5(33): 78 CEN Guoping, LONG Xiaoyong, HONG Gang, et al. Influence of silt content on frost heaving properties of gravel soil[J]. Science and Technology Review, 2015, 5(33): 78
    [22]龙小勇, 岑国平, 蔡良才, 等. 道面结构不均匀冻胀模型试验及数值模拟[J]. 哈尔滨工业大学学报, 2018, 9(50): 68 LONG Xiaoyong, CEN Guoping, CAI Liangcai, et al. Model test and numerical simulation of uneven frost heave of pavement structure[J]. Journal of Harbin Institute of Technology, 2018, 9(50): 68
    [23]岑国平, 龙小勇, 洪刚, 等. 青藏高原季冻区砂砾土冻胀特性试验[J]. 哈尔滨工业大学学报, 2016, 3(48): 53 CEN Guoping, LONG Xiaoyong, HONG Gang, et al.Frost heaving properties of gravel soil in seasonal frozen region of Qinghai-Tibet Plateau[J]. Journal of Harbin Institute of Technology, 2016, 3(48): 53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700