用户名: 密码: 验证码:
高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering
  • 作者:张文涛 ; 黄稳柱 ; 李芳
  • 英文作者:Zhang Wentao;Huang Wenzhu;Li Fang;State Key Laboratory of Transducer Technology, Institute of Semiconductors, Chinese Academy of Sciences;College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences;
  • 关键词:光纤光栅传感器 ; 高精度 ; 地球物理勘探 ; 地震观测 ; 海洋观测
  • 英文关键词:fiber Bragg grating sensor;;high precision;;geophysical exploration;;seismic observation;;marine observation
  • 中文刊名:GDGC
  • 英文刊名:Opto-Electronic Engineering
  • 机构:中国科学院半导体研究所传感技术联合国家重点实验室;中国科学院大学材料科学与光电子技术学院;
  • 出版日期:2018-09-06
  • 出版单位:光电工程
  • 年:2018
  • 期:v.45;No.346
  • 基金:国家重点研发计划(2017YFB0405503);; 国家自然科学基金资助项目(61605196);; 中国科学院青年创新促进会(2016106)~~
  • 语种:中文;
  • 页:GDGC201809010
  • 页数:15
  • CN:09
  • ISSN:51-1346/O4
  • 分类号:94-108
摘要
随着特种光纤光栅刻写制作技术以及信号解调技术的发展,光纤光栅传感器的测量精度和测量频带不断得到提升,这大大促进了其在地球物理勘探、地震观测以及海洋观测等具有高精度探测需求的领域中的应用。当前,高精度宽频带光纤光栅传感器的发展依然面临一些核心器件与关键技术方面的挑战,包括高精细度光纤光栅谐振腔、低噪声窄线宽可调谐激光光源等核心器件,高精度宽频带光纤光栅波长解调技术、大规模组网技术、高灵敏度信号拾取探头设计等关键技术。本文首先介绍了高精度光纤光栅传感技术的发展概况,然后重点阐述高精度光纤光栅传感系统所需的核心器件与关键技术,并对其在地球物理勘探、地震观测和海洋观测中的应用情况进行分析探讨,最后对高精度光纤光栅传感技术及其应用作了展望。本文旨在分析总结高精度光纤光栅传感技术及其应用中涉及的一些核心技术和急需解决的关键问题,以期为该项技术的发展和应用提供借鉴。
        With the development of fiber Bragg grating(FBG) and FBG based resonant cavity writing and signal demodulation technique, the measurement precision and frequency bandwidth of FBG sensor continue to be improved. It can highly promote its application in several fields of high precision detection requirements, such as geophysical exploration, seismic observation and marine observation. At present, the development of high-precision and wide bandwidth FBG sensors still face some challenges of key devices and techniques, including high-fineness FBG based resonant and low-noise narrow-linewidth tunable laser, high-precision broadband FBG wavelength demodulation technique, large-scale networking technique and high-sensitivity signal pickup probe design. Firstly, this paper introduces the development of high-precision FBG sensing technique. Secondly, it focuses on the cord devices and key techniques required for high-precision FBG sensing system and their applications in geophysical exploration, seismic observations and ocean observations. Finally, the high-precision FBG sensing technique and its application are prospected. In order to provide references for the development and application of high-precision fiber Bragg grating sensing technology, this paper aims to analyze and summarize some of the core techniques involved in high-precision FBG sensing technique and its application and the key issues that need to be solved.
引文
[1]Majumder M,Gangopadhyay T K,Chakraborty A K,et al.Fibre Bragg gratings in structural health monitoring-Present status and applications[J].Sensors and Actuators A:Physical,2008,147(1):150?164.
    [2]Li H N,Li D S,Song G B.Recent applications of fiber optic sensors to health monitoring in civil engineering[J].Engineering Structures,2004,26(11):1647?1657.
    [3]Willsch R,Ecke W,Bartelt H.Optical fiber grating sensor networks and their application in electric power facilities,aerospace and geotechnical engineering[C]//IEEE Optical Fiber Sensors Conference Technical Digest,2002:49?54.
    [4]Hill K O,Meltz G.Fiber Bragg grating technology fundamentals and overview[J].Journal of Lightwave Technology,1997,15(8):1263?1276.
    [5]Martinez A,Dubov M,Khrushchev I,et al.Direct writing of fibre Bragg gratings by femtosecond laser[J].Electronics Letters,2004,40(19):1170?1172.
    [6]Zhao Y,Liao Y B.Discrimination methods and demodulation techniques for fiber Bragg grating sensors[J].Optics and Lasers in Engineering,2004,41(1):1?18.
    [7]Davis M A,Kersey A D.Matched-filter interrogation technique for fibre Bragg grating arrays[J].Electronics Letters,1995,31(10):822?823.
    [8]Fu H Y,Liu H L,Dong X,et al.High-speed fibre Bragg grating sensor interrogation using dispersion compensation fibre[J].Electronics Letters,2008,44(10):618?619.
    [9]Kersey A D,Berkoff T A,Morey W W.Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter[J].Optics Letters,1993,18(16):1370?1372.
    [10]Zhou Z A,Liu A Y.The application of Fiber Bragg grating sensor to high precision strain measure[J].Progress in Geophysics,2005,20(3):864?866.周振安,刘爱英.光纤光栅传感器用于高精度应变测量研究[J].地球物理学进展,2005,20(3):864?866.
    [11]High sensitivity MEMS dual detector[OE/OL].http://www.sitan-china.com/chanpinjieshao/wtyq/glmdm/.
    [12]TBA-33M downhole force balance accelerometer[OE/OL].http://www.tai-de.com/details.php?name=tbatbg_33m&type=pr od.
    [13]Accelerometer os7100[OE/OL].http://www.micronoptics.com/product/accelerometer-os7100/.
    [14]Digital Hydrophone.[OE/OL].http://www.acousnet.com/pro.aspx?id=158.
    [15]Pendry J B.Negative refraction makes a perfect lens[J].Physical Review Letters,2000,85(18):3966?3969.
    [16]Takahashi N,Yoshimura K,Takahashi S.Characteristics of fiber Bragg grating hydrophone[J].IEICE Transactions on Electronics,2000,83(3):275?281.
    [17]Qiu Z H,Shi Y L.Developments of borehole strain observation outside China[J].Acta Seismologica Sinica,2004,26(S1):162-168.邱泽华,石耀霖.国外钻孔应变观测的发展现状[J].地震学报,2004,26(S1):162-168.
    [18]Chi S L.Deep-hole broad-band strain-seismograph and high-frequency seimology--the hope to successful earthquake prediction[J].Progress in Geophysics,2007,22(4):1164-1170.池顺良.深井宽频钻孔应变地震仪与高频地震学--地震预测观测技术的发展方向,实现地震预报的希望[J].地球物理学进展,2007,22(4):1164-1170.
    [19]Liu Y L,He J,Wang Y J,et al.Progress of seismic wave detection by fiber-optic sensors[J].Laser&Optoelectronics Progress,2009,46(11):21-28.刘育梁,何俊,王永杰,等.光纤地震波探测的研究进展[J].激光与光电子学进展,2009,46(11):21-28.
    [20]Liu W Y,Zhang W T,Li L,et al.Optical fiber sensory technology:future direction for earthquake precursor monitoring[J].Earthquake,2012,32(4):92?102.刘文义,张文涛,李丽,等.光纤传感技术--未来地震监测的发展方向[J].地震,2012,32(4):92?102.
    [21]Lissak B,Arie A,Tur M.Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings[J].Optics Letters,1998,23(24):1930-1932.
    [22]Arie A,Lissak B,Tur M.Static fiber-Bragg grating strain sensing using frequency-locked lasers[J].Journal of Lightwave Technology,1999,17(10):1849-1855.
    [23]Chow J H,Littler I C M,De Vine G,et al.Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications[J].Journal of Lightwave Technology,2005,23(5):1881-1889.
    [24]Chow J H,Littler I C M,Mcclelland D E,et al.Laser frequency-noise-limited ultrahigh resolution remote fiber sensing[J].Optics Express,2006,14(11):4617-4624.
    [25]Gagliardi G,Salza M,Ferraro P,et al.Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation[J].Optics Express,2005,13(7):2377-2384.
    [26]Lam T T Y,Chow J H,Mow-Lowry C M,et al.A stabilized fiber laser for high-resolution low-frequency strain sensing[J].IEEESensors Journal,2009,9(8):983-986.
    [27]Lam T T Y,Chow J H,Shaddock D A,et al.High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing[J].Applied Optics,2010,49(21):4029-4033.
    [28]Gagliardi G,Salza M,Avino S,et al.Probing the ultimate limit of fiber-optic strain sensing[J].Science,2010,330(6007):1081-1084.
    [29]Liu Q W,Tokunaga T,He Z Y.Realization of Nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers[J].Optics Express,2011,19(21):20214-20223.
    [30]Liu Q W,Tokunaga T,He Z Y.Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[J].Optics Letters,2011,36(20):4044-4046.
    [31]Malara P,Mastronardi L,Campanella C E,et al.Split-mode fiber Bragg grating sensor for high-resolution static strain measurements[J].Optics Letters,2014,39(24):6899-6902.
    [32]Chen J G,Liu Q W,He Z Y.Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers[J].Optics Express,2017,25(18):21914?21925.
    [33]Huang W Z,Zhang W T,Zhen T K,et al.A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors[J].IEEE Photonics Technology Letters,2014,26(16):1597-1600.
    [34]Huang W Z,Zhang W T,Zhen T K,et al.π-phase-shifted FBGfor high-resolution static-strain measurement based on wavelet threshold denoising algorithm[J].Journal of Lightwave Technology,2014,32(22):3692-3698.
    [35]Huang W Z,Zhang W T,Li F.Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors[J].Optics Letters,2015,40(7):1406-1409.
    [36]Yoshino T,Kurosawa K,Itoh K,et al.Fiber-optic Fabry-Perot interferometer and its sensor applications[J].IEEE Transactions on Microwave Theory and Techniques,1982,30(10):1612?1621.
    [37]Wu Z X,Wu F,Cai L L,et al.Strain measurement using a fiber Bragg grating Fabry-Perot sensor[J].Optical Technique,2005,31(4):559?562.吴朝霞,吴飞,蔡璐璐,等.Bragg光纤光栅法布里-珀罗传感器的应变测量[J].光学技术,2005,31(4):559?562.
    [38]Tsai W H,Lin C J.A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor[J].Journal of Lightwave Technology,2001,19(5):682?686.
    [39]Avino S,Giorgini A,De Natale P,et al.Fiber-optic resonators for strain-acoustic sensing and chemical spectroscopy[M]//GAGLIARDI G,LOOCK H P.Cavity-Enhanced Spectroscopy and Sensing.Berlin,Heidelberg:Springer,2014:463?484.
    [40]Huang W Z,Feng S W,Zhang W T,et al.DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator[J].Optics Express,2016,24(11):12321-12329.
    [41]R?nnekleiv E.Frequency and intensity noise of single frequency fiber Bragg grating lasers[J].Optical Fiber Technology,2001,7(3):206-235.
    [42]New low noise koheras basik and adjustik fiber laser[EB/OL].http://www.nktphotonics.com/lasers-fibers/en/2016/06/07/new-koheras-basik-adjustik-fiber-lasers/.
    [43]Chen J G,Liu Q W,Fan X Y,et al.Sub-Nano-strain multiplexed fiber optic sensor array for quasi-static strain measurement[J].IEEE Photonics Technology Letters,2016,28(21):2311?2314.
    [44]Zhang W T,Huang W Z,Luo Y B,et al.High resolution fiber optic seismometer[J].Chinese Journal of Sensors and Actuators,2017,30(4):491?495.张文涛,黄稳柱,罗英波,等.高精度光纤光栅地震计[J].传感技术学报,2017,30(4):491?495.
    [45]Knudsen S,Havsg?rd G B,Berg A,et al.High resolution fiber-optic 3-C seismic sensor system for in-well imaging and monitoring applications[C]//Proceedings of the 18th International Conference on Optical Fiber Sensors,2006:FB2.
    [46]耿启立.地震数据采集系统产品现状及发展趋势(上)[J].地质装备,2016,17(5):21-31,37.
    [47]Zeng R,Lin J,Zhao Y J.Development situation of geophones and its application in seismic array observation[J].Progress in Geophysics,2014,29(5):2106-2112.曾然,林君,赵玉江.地震检波器的发展现状及其在地震台阵观测中的应用[J].地球物理学进展,2014,29(5):2106-2112.
    [48]Zhang Y,Ning J,Yang S M,et al.Field test investigation of fiber optic seismic geophone in oilfield exploration[J].Proceedings of SPIE,2007,6770:677005.
    [49]The high performance optical fiber seismometer of institute of semiconductors was successfully tested in liaohe oilfield[EB/OL]http://www.cas.cn/ky/kyjz/201102/t20110216_3071949.shtml.
    [50]Zumberge M A,Wyatt F K,Yu D X,et al.Optical fibers for measurement of earth strain[J].Applied Optics,1988,27(19):4131-4138.
    [51]Gagliardi G,Maddaloni P,Malara P,et al.Ultra-high sensitivity frequency-comb-referenced multi-parametric sensors based on1-D photonic components[J].Proceedings of SPIE,2008,7056:70560I.
    [52]Liu Q W,He Z Y,Tokunaga T.Sensing the earth crustal deformation with Nano-strain resolution fiber-optic sensors[J].Optics Express,2015,23(11):A428?A436.
    [53]He Z Y,Liu Q W,Chen J G.Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation[J].Acta Physica Sinica,2017,66(7):074208.何祖源,刘庆文,陈嘉庚.面向地壳形变观测的超高分辨率光纤应变传感系统[J].物理学报,2017,66(7):074208.
    [54]Li H L,Li H.Status and developments of borehole strain observations in China[J].Acta Geologica Sinica,2010,84(6):895-900.李海亮,李宏.钻孔应变观测现状与展望[J].地质学报,2010,84(6):895-900.
    [55]Qiu Z H,Xie F R,Su K Z,et al.New era of borehole strain observation[J].Recent Developments in world Seismology,2004(1):7-14.邱泽华,谢富仁,苏恺之,等.发展钻孔应变观测的战略构想[J].国际地震动态,2004(1):7-14.
    [56]Zhang W T,Li F.Optical fiber drilling strain gauge:CN,CN201110272950.6[P].2012-01-18.张文涛,李芳.光纤钻孔应变仪:中国,CN201110272950.6[P].2012-01-18.
    [57]Zhang W T,Li F.Fiber body strain gauge:CN,CN201110272995.3[P].2012-02-22.张文涛,李芳.光纤体应变仪:中国,CN201110272995.3[P].2012-02-22.
    [58]Zhang W T,Li F.Component-type optical fiber drilling deformeter:CN,CN201110272389.1[P].2012-02-22.张文涛,李芳.分量式光纤钻孔应变仪:中国,CN201110272389.1[P].2012-02-22.
    [59]Zhang W T,Li F.Optical fiber borehole strainmeter for measuring state quantity:CN,CN201110272925.8[P].2012-05-22.张文涛,李芳.一种测量状态量的光纤钻孔应变仪:中国,CN201110272925.8[P].2012-05-22.
    [60]Permanent reservoir monitoring[EB/OL].https://www.pgs.com/marine-acquisition/services/permanent-reservoir-monitoring/.
    [61]Fujihashi K,Aoki T,Okutsu M,et al.Development of seafloor seismic and tsunami observation system[C]//Proceedings of2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,2007:349?355.
    [62]电科.中国电科成功研制海洋地震海啸监测用光纤传感器系统[J].军民两用技术与产品,2014(12):38.
    [63]Zhang W T,Wang Z G,Huang W Z,et al.Fiber laser sensors for micro seismic monitoring[J].Measurement,2016,79:203-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700