用户名: 密码: 验证码:
孔兑沙漠小流域高含沙洪水水沙关系特征及其指示意义——以毛布拉孔兑苏达尔沟为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of sediment-discharge relationship of hyper-concentrated flood and its implication in the Sudaer River of Maobula Kongdui
  • 作者:李永山 ; 贾晓鹏 ; 马启民 ; 斯庆毕力格 ; 王海兵
  • 英文作者:LI Yongshan;JIA Xiaopeng;MA Qimin;Siqing Bilige;WANG Haibing;Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Forestry Bureau of Ordos;
  • 关键词:孔兑 ; 沙漠沟谷 ; 高含沙洪水 ; 水沙关系
  • 英文关键词:Kongduis;;desert channel;;hyper-concentrated flood;;sediment-discharge relationship
  • 中文刊名:GHZH
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室;中国科学院大学;鄂尔多斯市林业局;
  • 出版日期:2018-12-26
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:v.33;No.247
  • 基金:国家重点研发计划课题(2016YFC0402401);; 鄂尔多斯林业局委托项目(39Y239H91)资助
  • 语种:中文;
  • 页:GHZH201903016
  • 页数:6
  • CN:03
  • ISSN:15-1112/N
  • 分类号:94-99
摘要
黄河上游十大孔兑流域是风水复合侵蚀十分严重的区域,以高含沙洪水为典型特征,水土流失严重,对区域生态与环境以及黄河干流造成严重威胁。因此,揭示孔兑小流域的暴雨洪水水沙关系,阐明高含沙洪水泥沙输移过程与特征,对防治区域泥沙灾害与整治水土流失具有指导意义。流量与含沙量(悬移质含量)滞后环(C-Q环)是研究水沙关系的重要工具和手段,是一种很有效的用来探讨泥沙输移动态变化的方法,能揭示泥沙输移的空间与时间上的联系,区分悬移质泥沙供给的时空来源。文中选择毛布拉孔兑支沟苏达尔沟作为孔兑沙漠小流域的典型观测对象,基于实地观测的暴雨洪水数据,研究探讨高含沙洪水的水沙关系。结果表明:砒砂岩与风沙是该区域高含沙洪水主要泥沙供给源,但两者对其洪水悬移质的供给方式不同。受砒砂岩沟道塌岸的滞后效应影响,洪水在上游砒砂岩段的水沙关系环表现为典型的逆时针滞后环,洪水涨水阶段泥沙含量约0. 2×10~3kg·m~(~(-3)),塌岸滞后效应使洪水退水阶段的最大含沙量约0. 8×10~3kg·m~(~(-3))。在下游沙漠段,风沙的大量横向供给直接导致水沙关系完全区别于上游砒砂岩段。由于沟岸沙丘的易侵蚀性与松散非粘滞性,洪水对沟岸沙丘的侵蚀过程并无滞后效应,所以洪水涨水阶段泥沙浓度急剧增大,形成超高含沙量的洪水,洪水泥沙浓度峰值平均约1. 2×10~3kg·m~(~(-3)),最大达1. 5×10~3kg·m~(~(-3));洪水退水阶段前期悬移质浓度无显著下降,直至洪水末期消退阶段悬移质浓度才急剧下降,水沙关系曲线呈现为"8"字形滞后环。因此,沙漠风沙的横向供给是该区域风水复合侵蚀与高含沙洪水的重要影响因素。
        Ten Kongdui: is at the Upper Yellow River,and one of the typical regions of fluvial-aeolian interactions with serious water and soil loss,characterized by hyper-concentrated flood,which poses serious threats to local eco-environment system and the Yellow River. Thus,revealing sediment-discharge relationship and understanding suspended sediment dynamics in the small watershed of Kongduis can provide significant references for preventing sediment disaster and controlling water and soil loss in this area. Sediment-discharge hysteresis loop( C-Q loop),a useful method to explore suspended sediment dynamics,is an important means of studying discharge-sediment relationship,which can reveal temporal and spatial variation of sediment transport and distinguish sediment source origins. This paper has chosen the Sudaer river of Maobula Kongdui as the monitoring area of the small desert regions. Based on the monitored storm-flood data in the Sudaer river,we studied and explored the sediment-discharge relationship of the hyper-concentrated flood. The results show that "Pisha"sandstone sediment and aeolian sand are the two major suspended sediment origins,but they have different supply patterns for suspended sediments in the hyper-concentrated floods. In the upper reaches of the Sudaer river,owing to the hysteresis effect of bank collapse,anticlockwise hysteresis loops developed; there was mean 0. 2 ×10~3 kg·m~(-3) of suspended sediment concentration( SSC) on the rising limp,but 0. 8 × 10~3 kg·m~(-3) of SSC on the falling limp caused by the hysteresis effect of bank collapse. However,in the lower reaches of the Sudaer river,large lateral infusion of aeolian sand has a significant impact on sediment-discharge relationship,consequently,which is different from the "Pisha"sandstone area upstream. Owing to noncohesive and unconsolidated aeolian dunes with the hyper-erobility,there was no hysteresis effect on the contribution of dunes to suspended sediments. Therefore,in the rising stage of discharge,SSC sharply increased and developed hyper-concentrated flood,with the mean SSC of 1. 2 × 10~3 kg·m~(-3) and the maximum SSC of 1. 5 × 10~3 kg·m~(-3). In the early falling stage of discharge,there was no obvious reduction in SSC; whereas in the last falling stage of discharge,SSC tended to be a sharp decreasing trend. The sediment-discharge relationship developed figure-eight loops in lower reaches of the Sudaer river. Thus,lateral infusion of aeolian sand is the significant factor in the aeolian-fluvial interactions and hyper-concentrated floods in this area.
引文
[1]Field J P,Breshears D D,Whicker J J. Toward a more holistic perspective of soil erosion:Why aeolian research needs to explicitly consider fluvial processes and interactions[J]. Aeolian Research,2009,1(1-2):9-17.
    [2]Tooth S. Process,form and change in dryland rivers:a review of recent research[J]. Earth-Science Reviews,2000,51(1-4):67-107.
    [3]Langford R P. Fluvial-aeolian interactions:Part I,modern systems[J]. Sedimentology,2010,36(6):1023-1035.
    [4]Mctainshb G H,Bullarda J E. Aeolian-fluvial interactions in dryland environments:examples,concepts and Australia case study[J]. Progress in Physical Geography,2003,27(4):471-501.
    [5]Belnap J,Munson S M,Field J P. Aeolian and fluvial processes in dryland regions:the need for integrated studies[J]. Ecohydrology,2011,4(5):615-622.
    [6]Smith N D,Smith D G. William River:An outstanding example of channel widening and braiding caused by bed-load addition[J]. Geology,1984,12(2):78-82.
    [7]张建,马翠丽,雷鸣,等.内蒙古十大孔兑水沙特性及治理措施研究[J].人民黄河,2013,35(10):72-74,77.
    [8]刘晓林,杨胜天,周旭,等. 1980年以来黄河内蒙古段十大孔兑流域土地利用变化时空特征[J].南水北调与水利科技,2016(1):30
    [9]杨根生.风沙灾害论文集[M].北京:海洋出版社,2005:23-34.
    [10]杨根生,拓万全,戴丰年,等.风沙对黄河内蒙古河段河道泥沙淤积的影响[J].中国沙漠,2003,23(2):54-61.
    [11]张翔.黄河上游十大孔兑地区风水复合侵蚀产沙过程研究[D].西安:西安理工大学,2016:1-105.
    [12]王平,侯素珍,张原锋,等.黄河上游孔兑高含沙洪水特点与冲淤特性[J].泥沙研究,2013(1):67-73.
    [13]许炯心.“十大孔兑”侵蚀产沙与风水两相作用及高含沙水流的关系[J].泥沙研究,2013(6):28-37.
    [14]王平,张原锋,侯素珍,等.黄河上游高含沙支流入汇与交汇区淤积形态试验研究[J].四川大学学报(工程科学版),2013,45(5):34-42.
    [15]张荣刚,王金花,靳莉君,等.引发2016年十大孔兑严重山洪的暴雨诊断分析[J].人民黄河,2017,39(9):1-4.
    [16]冯国华,张庆琼.十大孔兑综合治理与黄河内蒙古段度汛安全[J].中国水土保持,2008(4):8-10.
    [17]林秀芝,郭彦,侯素珍.内蒙古十大孔兑输沙量估算[J].泥沙研究,2014(2):15-20.
    [18]朱吉生,李纪人,黄诗峰,等.近30年十大孔兑流域植被覆盖度空间变化的遥感调查与分析[J].中国水土保持,2015(7):68-70.
    [19]Yang H,Shi C. The fractal characteristics of drainage networks and erosion evolution stages of ten kongduis in the upper reaches of the Yellow River,China[J]. Journal of Resources and Ecology,2017,8(2):165-173.
    [20]许炯心.黄河内蒙古段支流“十大孔兑”侵蚀产沙的时空变化及其成因[J].中国沙漠,2014,34(6):1641-1649.
    [21]孟志华,孟阵.黄河内蒙古段十大孔兑产沙量估算模型分析[J].水电能源科学,2015(10):76-78.
    [22]宋阳,刘连友,严平.风水复合侵蚀研究述评[J].地理学报,2006,61(1):77-88.
    [23]杨会民,王静爱,邹学勇,等.风水复合侵蚀研究进展与展望[J].中国沙漠,2016,36(4):962-971.
    [24]Ta W Q,Wang H B,Jia X P. The contribution of aeolian processes to fluvial sediment yield from a desert watershed in the Ordos Plateau,China[J]. Hydrological Processes,2015,29(1):80-89.
    [25]Aich V,Zimmermann A,Elsenbeer H. Quantification and interpretation of suspended-sediment discharge hysteresis patterns:How much data do we need?[J]. Catena,2014,122(12):120-129.
    [26]Fan X L,Shi C X,Zhou Y Y,et al. Sediment rating curves in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications[J]. Quaternary International,2012,282(282):152-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700