用户名: 密码: 验证码:
砂箱物理模型浅表底辟构造研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Review of Tectonic Sandbox Modeling of Diapir Structure in Shallow Crust
  • 作者:赖冬 ; 范彩伟 ; 罗强 ; 周政 ; 何宇 ; 王兴建 ; 邓宾
  • 英文作者:Lai Dong;Fan Caiwei;Luo Qiang;Zhou Zheng;He Yu;Wang Xingjian;Deng Bin;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology;Zhanjiang Branch of CNOOC Ltd.;
  • 关键词:底辟构造 ; 砂箱模型 ; 流变学相似性
  • 英文关键词:diapir structure;;analogue modelling;;rheological similarity
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:成都理工大学油气藏地质及开发工程国家重点实验室;中海石油(中国)有限公司湛江分公司;
  • 出版日期:2019-05-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.186
  • 基金:国家科技重大专项(2016ZX05024-05-07);; 国家自然科学基金项目(41572111)
  • 语种:中文;
  • 页:DZKQ201903010
  • 页数:17
  • CN:03
  • ISSN:42-1240/P
  • 分类号:109-125
摘要
地壳浅表存在不同形式和结构的底辟,膏盐底辟和泥岩底辟的生长导致上覆层系发生构造变形、破裂,常伴随油气等流体运移形成不同类型的油气藏或矿藏而备受关注。主要基于以自然底辟相关构造为研究对象的砂箱物理模型研究结果,系统阐述了地壳浅表底辟构造"实验-实例"互证相似性机理,综述了砂箱物理模型模拟所揭示的底辟构造形成过程与特征,并以巴西Santos和中国南海莺歌海含油气盆地底辟构造为例对比探讨了砂箱模型实验的可行性。通过"实验-实例"间具相似流变学特征的砂箱物理模拟研究,揭示出底辟形态与其成熟度、围岩与底辟物质黏度有关,被动底辟构造形态受控于底辟上升速率与沉积加积速率相对比值;底辟构造平面上具典型环带结构,其内部结构的复杂程度随构造走向或倾向发生变化,伴随底辟上升和侵位,其围岩发育各类伴生构造;膏盐底辟和泥岩底辟的物质流动特性、驱动机制及流动单元的差异导致其底辟形态、构造样式、地貌特征明显不同;底辟构造形成演化的主控因素是与重力、侧向应力及热作用相关的差异载荷作用,而浮力为次要因素,同时基底盐层起伏及地形坡度对盐流和盐上变形模式具有一定的影响。砂箱物理模拟能为底辟构造运动学和内部结构的解释提供较好的模型,能够有效再现从拉张被动大陆边缘体系到挤压褶皱冲断带-前陆盆地体系中底辟构造形成演化的四维过程,在与膏盐、泥岩(流体)底辟构造相关的深层、深水油气勘探中将发挥越来越重要的作用。
        There are different forms and structures of diapirs in shallow crust. Salt diapirs and mud diapirs can cause overburden deformation and failure, often accompanied by the migration of hydrocarbons and other fluids to form different traps or mineral deposits. In this paper, we systematically elaborate the mechanism of rheological similarity between the experiments and prototypes, and summarize the growing process and characteristics of the diapir structure based on the research of natural diapirs structure using analogue modelling. The simulation experiments reveal that the morphology of diapirs is related to their maturity and the viscosity ratio between surrounding rocks and diapir zone. The passive diapir structure is controlled by the relative ratio of diapir rising rate to sedimentary accretion rate. Generally, the diapir structure has a typical ring-shaped structure on the plane, and the complexity of its internal structure changes with the tectonic trend or strike. Furthermore, the surrounding rocks can form many special folds and fault systems caused by the activity of diapir. However, salt diapirs and mud diapirs are different in morphology, structural style and geomorphological features resulting from the differences in the flow properties, driving mechanisms and flow units. The main controlling factor for the formation and evolution of a diapir is the differential loading related to gravity, lateral stress and thermal effects, while buoyancy is a secondary factor. At the same time, the base-salt relief and the slope have a certain influence on the salt flow and the overburden deformation. In a word, the analgoue modelling can provide a better model for the interpretation of diapirism kinematics and its internal structure, and effectively reproduce the formation processes of diapir structures from the stretched passive continental margin system to the extruded fold-thrust belt system. So physical modelling plays an increasingly important role in deep oil and gas exploration related to salt and mud(fluid) diapir structures.
引文
[1] England R W.The identification of granitic diapirs[J].Journal of the Geological Society,1990,147(6):931-933.
    [2] Talbot C J.QUO Vadis tectonophysics?With a pinch of salt![J].Journal of Geodynamics,1992,16(1/2):1-20.
    [3] Milkov A V.Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J].Marine Geology,2000,167(1/2):29-42.
    [4] Hansen V L.Venus diapirs:Thermal or compositional[J].Geological Society of America Bulletin,2003,115(9):1040-1052.
    [5] Deville E,Guerlais S H,Callec Y,et al.Liquefied vs stratified sediment mobilization processes:Insight from the South of the Barbados accretionary prism[J].Tectonophysics,2006,428(1):33-47.
    [6] Warren J K.Evaporites:A geological compendium[M].second ed.Switzerland :Springer International Publishing,2016.
    [7] 贾承造,赵文智,魏国齐,等.盐构造与油气勘探[J].石油勘探与开发,2003,30(2):17-19.
    [8] 李江海,王洪浩,周肖贝.盐构造[M].北京:科学出版社,2015.
    [9] Rise L,Chand S,Hjelstuen B O,et al.Late Cenozoic geological development of the south V?ring margin,mid-Norway[J].Marine & Petroleum Geology,2010,27(9):1789-1803.
    [10] Halbouty M T.Salt domes,gulf region,United States and Mexico[M].Houston,Texas:Gulf Publishing Company,1979.
    [11] Davison I,Alsop I,Birch P,et al.Geometry and late-stage structural evolution of central graben salt diapirs,North Sea[J].Marine & Petroleum Geology,2000,17(4):499-522.
    [12] Dooley T P,Jackson M P A,Hudec M R.Inflation and deflation of deeply buried salt stocks during lateral shortening[J].Journal of Structural Geology,2009,31(6):582-600.
    [13] Davison I,Insley M,Harper M,et al.Physical modelling of overburden deformation around salt diapirs[J].Tectonophysics,1993,228(3/4):255-274.
    [14] Jackson M P A,Talbot C J.External shapes,strain rates,and dynamics of salt structures[J].Geological Society of America Bulletin,1986,97(3):305-323.
    [15] Talbot C J,Medvedev S,Alavi M,et al.Salt extrusion at Kuh-e-Jahani,Iran,from June 1994 to November 1997[J].Geological Society London Special Publications,2000,174(1):93-110.
    [16] Jahani S,Callot J P,Lamotte D F D,et al.The salt diapirs of the eastern fars province (Zagros,Iran):A brief outline of their past and present[M]//Anon.Thrust belts and foreland basins.Berlin,Heidelberg:Springer 2007:289-308.
    [17] Warsitzka M,Kley J,Kukowski N.Salt diapirism driven by differential loading:Some insights from analogue modelling[J].Tectonophysics,2013,591(3):83-97.
    [18] Hudec M R,Jackson M P A.Terra infirma:Understanding salt tectonics[J].Earth-Science Reviews,2007,82(1/2):1-28.
    [19] Talbot C J.Molding of salt diapirs by stiff overburden[M]//Jackson M P A,Roberts D G,Snelson S.Salt Tectonics:A global perspective.[S.l.]:Am.Assoc.Pet.Geol.,1995:61-75.
    [20] Karam P,Mitra S.Experimental studies of the controls of the geometry and evolution of salt diapirs[J].Marine & Petroleum Geology,2016,77:1309-1322.
    [21] Strozyk F,Gent H V,Urai J L,et al.3D seismic study of complex intra-salt deformation:An example from the Upper Permian Zechstein 3 stringer,western Dutch offshore[J].Geological Society London Special Publications,2012,363(1):489-501.
    [22] Gent H V,Urai J L,Keijzer M D.The internal geometry of salt structures:A first look using 3D seismic data from the Zechstein of the Netherlands[J].Journal of Structural Geology,2011,33(3):292-311.
    [23] Jackson A L,Jackson M P A,Hudec M R,et al.Enigmatic structures within salt walls of the Santos Basin-Part 1.Geometry and kinematics from 3D seismic reflection and well data[J].Journal of Structural Geology,2015,75:135-162.
    [24] Escher B G,Kuenen P H.Experiments in connection with salt domes[J].Leidse Geologische Mededelingen,1928,3:151-182.
    [25] Jackson M P A,Talbot C J.Anatomy of mushroom-shaped diapirs[J].Journal of Structural Geology,1989,11(1):211-230.
    [26] Jackson M P A.Salt diapirs of the Great Kavir,central Iran[J].Surveys in Geophysics,1990,13(1):89-89.
    [27] Stewart S A.Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults[J].Marine & Petroleum Geology,2006,23(8):843-853.
    [28] Hudec M R,Jackson M P A.Growth of allochthonous salt sheets in passive margins and orogens[J].AAPG Bulletin,2006,90(10):1535-1564.
    [29] Koyi H A.Modeling the influence of sinking anhydrite blocks on salt diapirs targeted for hazardous waste disposal[J].Geology,2001,29(5):387-390.
    [30] Peel F J.The engines of gravity-driven movement on passive margins:Quantifying the relative contribution of spreading vs.gravity sliding mechanisms[J].Tectonophysics,2014,633:126-142.
    [31] Fort X,Brun J P,Chauvel F.Contraction induced by block rotation above salt (Angolan margin)[J].Marine & Petroleum Geology,2004,21(10):1281-1294.
    [32] Doooley T P,Hudec M R,Dan C,et al.The effects of base-salt relief on salt flow and suprasalt deformation patterns-Part 1:Flow across simple steps in the base of salt[J].Interpretation,2017,5(1):1-23.
    [33] Dooley T P,Hudec M R.The effects of base-salt relief on salt flow and suprasalt deformation patterns-Part 2:Application to the eastern Gulf of Mexico[J].Interpretation,2017,5(1):25-38.
    [34] Vendeville B C,Jackson M P A.The rise of diapirs during thin-skinned extension[J].Marine & Petroleum Geology,1992,9(4):331-353.
    [35] Brun J P,Fort X.Salt tectonics at passive margins:Geology versus models[J].Marine & Petroleum Geology,2011,28(6):1123-1145.
    [36] Rowan M G,Peel F J,Vendeville B C,et al.Salt tectonics at passive margins:Geology versus models-discussion[J].Marine & Petroleum Geology,2012,37(1):184-194.
    [37] Weijermars R,Hudec M R,Dooley T P,et al.Downbuilding salt stocks and sheets quantified in 3-D analytical models[J].Journal of Geophysical Research Solid Earth,2015,120(6):4616-4644.
    [38] Schultz-Ela D D,Jackson M P A,Vendeville B C.Mechanics of active salt diapirism[J].Tectonophysics,1993,228(3/4):275-312.
    [39] Barton D C.Mechanics of formation of salt domes with special reference to Gulf Coast salt domes of Texas and Louisiana[J].AAPG Bulletin,1933,17(9):1025-1083.
    [40] Giles K A,Rowan M G.Concepts inhalokinetic-sequence deformation and stratigraphy[J].Geological Society London Special Publications,2012,363(1):7-31.
    [41] Schultz-Ela D D.Origin of drag folds bordering salt diapirs[J].AAPG Bulletin,2003,87(5):757-780.
    [42] Talbot C J,Aftabi P.Geology and models of salt extrusion at Qum Kuh,Central Iran[J].Journal of the Geological Society,2004,161(2):321-334.
    [43] Alsop G I,Brown J P,Davison I,et al.The geometry of drag zones adjacent to salt diapirs[J].Journal of the Geological Society,2000,157(5):1019-1029.
    [44] Varela C L,Mohriak W U.Halokinetic rotating faults,salt intrusions,and seismic pitfalls in the petroleum exploration of divergent margins[J].AAPG Bulletin,2013,97(9):1421-1446.
    [45] Evans R J.The structure and formation of mud volcano summit calderas[J].Journal of the Geological Society,2008,165(4):769-780.
    [46] Morley C K,King R,Hillis R,et al.Deepwater fold and thrust belt classification,tectonics,structure and hydrocarbonprospectivity:A review[J].Earth Science Reviews,2011,104(1):41-91.
    [47] Davison I,Alsop G I,Evans N G,et al.Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben,North Sea[J].Marine & Petroleum Geology,2000,17(5):601-618.
    [48] Alsop G I,Weinberger R,Marco S,et al.Fault and fracture patterns around a strike-slip influenced salt wall[J].Journal of Structural Geology,2017,106:103-124.
    [49] Wu L,Trudgill B D,Kluth C F.Salt diapir reactivation and normal faulting in an oblique extensional system,Vulcan Sub-basin,NW Australia[J].Journal of the Geological Society,2016,173(5):783-799.
    [50] Davison I,Barreto P,Andrade A.Loulé:The anatomy of a squeezed diapir,Algarve Basin,southern Portugal[J].Journal of the Geological Society,2017,174(1):41-55.
    [51] Rowan M G,Giles K A,Iv T E H,et al.Megaflaps adjacent to salt diapirs[J].AAPG Bulletin,2016,100(11):1723-1747.
    [52] Graham R,Jackson M,Pilcher R,et al.Allochthonous salt in the sub-Alpine fold-thrust belt of Haute Provence,France[J].Geological Society London Special Publications,2012,363(1):595-615.
    [53] Morley C K,Guerin G.Comparison of gravity-driven deformation styles and behavior associated with mobile shales and salt[J].Tectonics,1996,15(6):1154-1170.
    [54] Haffert L,Haeckel M,Liebetrau V,et al.Fluid evolution and authigenic mineral paragenesis related to salt diapirism:The Mercator mud volcano in the Gulf of Cadiz[J].Geochimica et Cosmochimica Acta,2013,106(4):261-286.
    [55] Kholodov V N.Distribution and formation conditions of salt diapirs and mud volcanoes[J].Lithology & Mineral Resources,2013,48(5):398-415.
    [56] Weijermars R,Jackson M P A,Vendeville B.Rheological and tectonic modeling of salt provinces[J].Tectonophysics,1993,217(1/2):143-174.
    [57] Maltman A.The geological deformation of sediments[M]//Anon.The Geological deformation of sediments.[S.l.]:Chapman & Hall,1994:171-172.
    [58] Morley C K,Warren J,Tingay M,et al.Comparison of modern fluid distribution,pressure and flow in sediments associated with anticlines growing in deepwater (Brunei) and continental environments (Iran)[J].Marine & Petroleum Geology,2014,51(4):210-229.
    [59] Warren J K.Evaporites:Sediments,resources and hydrocarbons[M].[S.l.]:Springer,2006.
    [60] Brown K M.The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems[J].Journal of Geophysical Research Solid Earth,1990,95(B6):8969-8982.
    [61] Stewart S A,Davies R J.Structure and emplacement of mud volcano systems in the South Caspian Basin[J].Applied Psychology,2006,90(5):771-786.
    [62] Ramberg H.Gravity,deformation,and the Earth′s crust in theory,experiments and geological application[M].[S.l.]:Academic Press,1981.
    [63] Weijermars R,Schmeling H.Scaling of newtonian and non-newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J].Physics of the Earth & Planetary Interiors,1986,43(4):316-330.
    [64] Davison I,Alsop I,Blundell D.Salt tectonics:Some aspects of deformation mechanics[J].Geological Society London Special Publications,1996,100(1):1-10.
    [65] Galland O,Cobbold P R,Hallot E,et al.Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust[J].Earth & Planetary Science Letters,2006,243(3/4):786-804.
    [66] Dooley T P,Jackson M P A,Hudec M R.Breakout of squeezed stocks:Dispersal of roof fragments,source of extrusive salt and interaction with regional thrust faults[J].Basin Research,2015,27(1):3-25.
    [67] Adam J,Klinkmüller M,Schreurs G,et al.Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation:Integration of X-ray computed tomography and digital volume correlation techniques[J].Journal of Structural Geology,2013,55(5):127-149.
    [68] Paola C,Straub K,Mohrig D,et al.The "unreasonable effectiveness" of stratigraphic and geomorphic experiments[J].Earth-Science Reviews,2009,97(1/4):1-43.
    [69] Bahroudi A,Koyi H.Effect of spatial distribution of hormuz salt on deformation style in the Zagros fold and thrust belt:An analogue modelling approach[J].Journal of the Geological Society of London,2003,160(5):719-733.
    [70] Sokoutis D,Willingshofer E.Decoupling during continental collision and intra-plate deformation[J].Earth & Planetary Science Letters,2011,305(3/4):435-444.
    [71] Koyi H A,Ghasemi A,Hessami K,et al.The mechanical relationship between strike-slip faults and salt diapirs in the Zagros fold-thrust belt[J].Journal of the Geological Society,2008,165(6):1031-1044.
    [72] Klinkmüller M,Schreurs G,Rosenau M,et al.Properties of granular analogue model materials:A community wide survey[J].Tectonophysics,2016,684:23-38.
    [73] Callot J P,Salel J F,Letouzey J,et al.3D evolution of salt controlled minibasins:Interactions,folding and megaflap development[J].AAPG Bulletin,2016,100(9):1419-1442.
    [74] Callot J P,Jahani S,Letouzey J.The role of pre-existing diapirs in fold and thrust belt development[M]//Lacombe O.Thrust belt and foreland basin.Berlin:Springer,2007:309-323.
    [75] Dooley T P,Jackson M P A,Jackson A L,et al.Enigmatic structures within salt walls of the Santos Basin-Part 2:Mechanical explanation from physical modelling[J].Journal of Structural Geology,2015,75:163-187.
    [76] Callot J P,Trocme V,Letouzey J,et al.Pre-existing salt structures and the folding of the Zagros Mountains[J].Geological Society London Special Publications,2012,363(1):545-561.
    [77] Hudec M R,Jackson M P A.Regional restoration across the Kwanza Basin,Angola:Salt tectonics triggered by repeated uplift of a metastable passive margin[J].AAPG Bulletin,2004,88(7):971-990.
    [78] Quirk D G,Schodt N,Lassen B,et al.Salt tectonics on passive margins:Examples from Santos,Campos and Kwanza basins[J].Geological Society London Special Publications,2012,363(1):207-244.
    [79] Jackson C A L,Jackson M P A,Hudec M R,et al.Internal structure,kinematics,and growth of a salt wall:Insights from 3-D seismic data[J].Geology,2014,42(4):307-310.
    [80] Fiduk J C,Rowan M G.Analysis of folding and deformation within layered evaporites in Blocks BM-S-8 & -9,Santos Basin,Brazil[J].Geological Society London Special Publications,2012,363(1):471-487.
    [81] 余一欣,周心怀,彭文绪,等.盐构造研究进展述评[J].大地构造与成矿学,2011,35(2):169-182.
    [82] He J,Wang S,Zhang W,et al.Characteristics of mud diapirs and mud volcanoes and their relationship to oil and gas migration and accumulation in a marginal basin of the northern South China Sea[J].Environmental Earth Sciences,2016,75(15):1-12.
    [83] 谢玉洪,李绪深,童传新,等.莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式[J].中国海上油气,2015,27(4):1-12.
    [84] 黄保家,肖贤明,董伟良.莺歌海盆地烃源岩特征及天然气生成演化模式[J].天然气工业,2002,22(1):26-30.
    [85] 何家雄,黄火尧,陈龙操.莺歌海盆地泥底辟发育演化与油气运聚机制[J].沉积学报,1994,12(3):120-129.
    [86] 金博,刘震,李绪深.莺歌海盆地泥-流体底辟树型输导系统及运移模式[J].地质科学,2008,43(4):810-823.
    [87] 范彩伟.莺歌海大型走滑盆地构造变形特征及其地质意义[J].石油勘探与开发,2018,45(2):1-10.
    [88] 龚再生,李思田,谢泰俊,等.南海北部大陆边缘盆地分布与油气聚集[M].北京:科学出版社,1997:1-498.
    [89] 谢玉洪,黄保家.南海莺歌海盆地东方13-1高温高压气田特征与成藏机理[J].中国科学:地球科学,2014,44(8):1731-1739.
    [90] 谢玉洪.中国海洋石油总公司油气勘探新进展及展望[J].中国石油勘探,2018,23(1):26-35.
    [91] 张强,吕福亮,贺晓苏,等.南海近5年油气勘探进展与启示[J].中国石油勘探,2018,23(1):54-61.
    [92] 裴健翔,于俊峰,王立锋,等.莺歌海盆地中深层天然气勘探的关键问题及对策[J].石油学报,2011,32(4):573-578.
    [93] 何家雄,夏斌,张树林,等.莺歌海盆地泥底辟成因、展布特征及其与天然气运聚成藏关系[J].中国地质,2006,33(6):1336-1344.
    [94] 张敏强,钟志洪,夏斌,等.莺歌海盆地泥-流体底辟构造成因机制与天然气运聚[J].大地构造与成矿学,2004,28(2):118-125.
    [95] 张树林,黄耀琴,黄雄伟.流体底辟构造及其成因探讨[J].地质科技情报,1999,18(2):19-22.
    [96] 刘薇薇,马光克,王立锋,等.中国南海地区环状断层成因及其对天然气向斜构造成藏模式的控制[J].特种油气藏,2013,20(3):60-63.
    [97] 张树林,田世澄,朱芳冰,等.莺歌海盆地底辟构造的成因及石油地质意义[J].中国海上油气地质,1996,10(1):1-6.
    [98] 李绪深,张迎朝,杨希冰,等.莺歌海-琼东南盆地天然气勘探新认识与新进展[J].中国海上油气,2017,29(6):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700