用户名: 密码: 验证码:
烟道气对蒸汽腔影响可视化研究及机理分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Visualization and Mechanism Analysis of the Flue Gas Action on Steam Chamber
  • 作者:王壮壮 ; 李兆敏 ; 鹿腾 ; 杨建平 ; 王宏远
  • 英文作者:Wang Zhuangzhuang;Li Zhaomin;Lu Teng;Yang Jianping;Wang Hongyuan;China University of Petroleum (East China);PetroChina Liaohe Oilfield Company;
  • 关键词:SAGD ; 烟道气 ; 二维可视实验 ; 蒸汽腔扩展 ; 冷凝传热 ; 辽河油田
  • 英文关键词:SAGD;;flue gas;;2D visual experiment;;steam chamber expansion;;condensation heat transfer;;Liaohe Oilfield
  • 中文刊名:TZCZ
  • 英文刊名:Special Oil & Gas Reservoirs
  • 机构:中国石油大学(华东);中国石油辽河油田分公司;
  • 出版日期:2019-01-16 14:12
  • 出版单位:特种油气藏
  • 年:2019
  • 期:v.26;No.133
  • 基金:国家科技重大专项子课题“烟道气改善SAGD开发效果研究”(2016ZX05012-002-004);; 国家自然科学基金“致密油储层纳米流体渗吸驱油机制研究”(51604292)
  • 语种:中文;
  • 页:TZCZ201902025
  • 页数:5
  • CN:02
  • ISSN:21-1357/TE
  • 分类号:140-144
摘要
为了研究烟道气对SAGD蒸汽腔扩展的影响,利用二维可视化模型开展了SAGD和烟道气辅助SAGD物理模拟实验,并通过冷凝传热实验分析了烟道气的影响机理。结果表明:SAGD开发过程中,加入烟道气能使蒸汽腔先向上发育,形成气顶后再逐渐横向扩展,显著提高了蒸汽的波及效率;蒸汽腔在烟道气影响下的"二次发育"说明烟道气能促进蒸汽渗流传热,使更多热量进入岩心深部。分析认为:一方面烟道气通过指进为后续蒸汽开辟通道,加速蒸汽渗流;另一方面能抑制蒸汽与周围介质冷凝传热,减少渗流过程中的散热,使蒸汽携带更多热量向深部运移,即2种机理共同作用导致烟道气对蒸汽渗流传热起促进作用。该结果对深入认识烟道气的作用机理提供借鉴,对烟道气辅助SAGD生产实践有一定指导意义。
        In order to study the effect of flue gas on SAGD steam chamber expansion,SAGD and flue gas assisted SAGD physical simulation experiments were carried out by a 2 D visualization model. The action mechanism of flue gas was analyzed by a condensation heat transfer experiment. Result indicates that The flue gas enables the steam chamber to preferentially develop upwards during the development with SAGD. Then the steam chamber gradually expands laterally after the creation of gas cap,which significantly improves the steam swept efficiency. The"secondary development"of steam chamber due to the effect of flue gas reveals that flue gas can promote the heat transfer of steam seepage,which results in more heat transfer into deep core. Analysis believes that on one hand,the flue gas could create channels for the subsequent steam by fingering,which will accelerate steam seepage. On the other hand,flue gas can suppress the condensation heat transfer between steam and surrounding medium,which will reduce the heat dissipation during steam seepage and keep the steam with more heat transfer to the deep part.The combination of these two mechanisms leads to a positive action of flue gas on the steam seepage with heat transfer. This research could provide certain reference for the further understanding of flue gas action mechanism and the practice of flue gas assisted SAGD production.
引文
[1]思娜,安雷,邓辉,等.SAGD重油、油砂开采技术的创新进展及思考[J].石油钻采工艺,2016,38(1):98-104.
    [2]BUTLER R M,STEPHENS D J.The gravity drainage of steam-heated heavy oil to parallel horizontal wells[J].Journal of Canadian Petroleum Technology,1981,20(2):36-36.
    [3]BUTLER R M.Steam-assisted gravity drainage:concept,development,performance and Future[J].Journal of Canadian Petroleum Technology,1994,33(2):44-50.
    [4]武毅,张丽萍,李晓漫,等.超稠油SAGD开发蒸汽腔形成及扩展规律研究[J].特种油气藏,2007,14(6):40-43.
    [5]耿立峰.辽河油区超稠油双水平井SAGD技术研究[J].特种油气藏,2007,14(1):55-57.
    [6]张方礼,张丽萍,鲍君刚,等.蒸汽辅助重力泄油技术在超稠油开发中的应用[J].特种油气藏,2007,14(2):70-72.
    [7]刘万勇.后SAGD阶段开发技术探索与实践[J].中外能源,2016,21(5):46-49.
    [8]BAHLANI A M,BABADAGLI T.A critical review of the status of SAGD:where are we and what is next?[C].SPE113283,2008:1-3.
    [9]LAWAL K A.Economics of steam-assisted gravity drainage for the nigerian bitumen deposit[J].Journal of Petroleum Science&Engineering,2014,116(4):28-35.
    [10]张小波,郑学男,邰德军,等.SAGD添加非凝析气技术研究[J].西南石油大学学报(自然科学版),2010,32(2):113-117.
    [11]张运军,沈德煌,高永荣,等.二氧化碳气体辅助SAGD物理模拟实验[J].石油学报,2014,35(6):1147-1152.
    [12]李兆敏,王勇,高永荣,等.烟道气辅助SAGD数值模拟研究[J].特种油气藏,2011,18(1):58-60.
    [13]辛坤烈.烟道气辅助SAGD技术研究与现场试验[J].中外能源,2017,22(7):52-56.
    [14]高永荣,刘尚奇,沈德煌,等.氮气辅助SAGD开采技术优化研究[J].石油学报,2009,30(5):717-721.
    [15]纪佑军,程林松,刘其成,等.超稠油油藏蒸汽与非凝析气驱油数字化实验[J].石油学报,2010,31(4):602-606.
    [16]刘志波,程林松,纪佑军,等.蒸汽与天然气驱(SAGP)开采特征---与蒸汽辅助重力泄油(SAGD)对比分析[J].石油勘探与开发,2011,38(1):79-83.
    [17]YUAN Z,LIU P,ZHANG S,et al.Experimental study and numerical simulation of a solvent-assisted start-up for SAGD wells in heavy oil reservoirs[J].Journal of Petroleum Science&Engineering,2017,154:521-527.
    [18]DONG X,LIU H,HOU J,et al.Multi-thermal fluid assisted gravity drainage process:a new improved-oil-recovery technique for thick heavy oil reservoir[J].Journal of Petroleum Science&Engineering,2015,133:1-11.
    [19]马涛,王海波,邵红云.烟道气驱提高采收率技术发展现状[J].石油钻采工艺,2007,29(5):79-81.
    [20]王晓刚,李立清,唐琳,等.温室气体CO2的减排技术研究[J].能源环境保护,2006,20(2):1-5.
    [21]王一平.氮气辅助蒸汽驱强化传热机理及成因探讨[J].特种油气藏,2018,25(2):134-137.
    [22]宿吉强,孙中宁,范广铭,等.含不凝性气体的蒸汽冷凝传热实验研究[J].核动力工程,2014,35(1):36-41.
    [23]赵玉龙,赵军,王世学,等.含CO2的蒸汽凝结换热实验研究[J].低温与超导,2013,41(3):57-61.
    [24]葛明慧,赵军,王世学,等.含高浓度CO2的水蒸气在竖直平板上的凝结传热实验研究[J].热科学与技术,2015,14(1):14-18.
    [25]葛明慧.含高浓度CO2的蒸汽凝结换热及其强化传热性能研究[D].天津:天津大学,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700