用户名: 密码: 验证码:
915 MHz高功率MPCVD装置制备大面积高品质金刚石膜
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Large Area High Quality Diamond Films Deposition by 915 MHz High Power MPCVD Reactor
  • 作者:李义锋 ; 唐伟忠 ; 姜龙 ; 葛新岗 ; 张雅淋 ; 安晓明 ; 刘晓晨 ; 何奇宇 ; 张平伟 ; 郭辉 ; 孙振路
  • 英文作者:LI Yi-feng;TANG Wei-zhong;JIANG Long;GE Xin-gang;ZHANG Ya-lin;AN Xiao-ming;LIU Xiao-chen;HE Qi-yu;ZHANG Ping-wei;GUO Hui;SUN Zhen-lu;Hebei Institute of Laser;Hebei Plasma Diamond Technology Co.,Ltd.;Institute of Advanced Materials Science and Technology,University of Science and Technology Beijing;
  • 关键词:915 ; MHz ; MPCVD ; 金刚石薄膜
  • 英文关键词:915MHz;;MPCVD;;diamond film
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:河北省激光研究所;河北普莱斯曼金刚石科技有限公司;北京科技大学新材料技术研究院;
  • 出版日期:2019-07-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.249
  • 基金:河北省科学院科技计划项目(18705,19502);; 河北省自然科学基金面上项目(E2019302005)
  • 语种:中文;
  • 页:RGJT201907014
  • 页数:6
  • CN:07
  • ISSN:11-2637/O7
  • 分类号:95-100
摘要
采用自行研制的915 MHz/75 k W高功率微波等离子体化学气相沉积(MPCVD)装置,在输入功率60 k W,沉积气压20 k Pa的条件下制备了直径5英寸的大面积自支撑金刚石膜,并对金刚石膜的厚度,热导率,线膨胀系数,结晶质量,光学透过率等参数进行了表征。实验结果表明,制备的大面积自支撑金刚石厚膜均匀完整,相关性能参数达到较高水平,具有较好质量。热学级金刚石膜的生长厚度超过5 mm,生长速率达到12. 5μm/h;室温25℃热导率2010 W·m~(-1)·K~(-1),180℃条件下的热导率仍达到1320 W·m~(-1)·K~(-1);室温25. 4℃时线膨胀系数为1. 07×10~(-6)℃~(-1),300℃时升高至2. 13×10~(-6)℃~(-1)。光学级金刚石膜的生长厚度接近1 mm,生长速率约为2. 3μm/h,厚度偏差小于±2. 7%;双面抛光后的金刚石膜厚度约为700μm,其Raman半峰宽为2. 0 cm~(-1),PL谱中未出现明显与氮相关的杂质峰;其光学吸收边约为223 nm,270 nm处的紫外透过率接近60%,在8~25μm范围内的光学透过率超过70%。
        Thick polycrystalline free-standing diamond films of 5 inch in diameter were deposited by a self-made 915 MHz/75 k W high power microwave plasma chemical vapor deposition( MPCVD) system with input power of 60 k W and deposition pressure of 20 k Pa. The thickness,thermal conductivity,coefficient of thermal expansion,quality and optical transmission were characterized. The results indicate that the deposited thick free-standing diamond films are uniform,intact and high quality,their relevant performance parameters reaching a high level. Such as the thermal grade diamond film,its thickness is more than 5 mm with growth rate of about 12. 5 μm/h and coefficient of thermal conductivity of about 2010 W·m~(-1)·K~(-1) at25 ℃ and 1320 W·m~(-1)·K~(-1) at 180 ℃ as well as coefficient of thermal expansion of 1. 07 × 10~(-6)℃~(-1) at 25. 4 ℃ and 2. 13× 10~(-6)℃~(-1) at 300 ℃. The thickness of the as-grown optical grade diamond film is close 1 mm with growth rate of about 2. 3μm/h and thickness deviation less than ± 2. 7%. The double polished diamond film is about 700 μm and possesses excellent characteristics such as FWHM of Raman peak of only 2. 0 cm~(-1),a cutoff wavelength of 223 nm,UV transmission at 270 nm near 60%,as well as transmission more than 70% in the 8-25 μm range.
引文
[1] Füner M,Wild C,Koidl P. Simulation and Development of Optimized Microwave Plasma Reactors for Diamond Deposition[J]. Surface and Coatings Technology,1999,116-119:853-862.
    [2] Sevillano E,Williams B. Reactor Development for Microwave Plasma Deposition of Diamond[J]. Diamond Films Technology,1998,8(2):73-91.
    [3] Ralchenko V G,Smolin A A,Konov V I,et al. Large-area Diamond Deposition by Microwave Plasma[J]. Diam. Relat. Mater.,1997,6:417-421.
    [4] Zuo S S,Yaran M K,Grotjohn T A,et al. Investigation of Diamond Deposition Uniformity and Quality for Free-standing Film and Substrate Applications[J]. Diam. Relat. Mater.,2008,17:300-305.
    [5] Hemawan K W,Grotjohn T A,Reinhard D K,et al. Improved Microwave Plasma Cavity Reactor for Diamond Synthesis at High Pressure and High Power Density[J]. Diam. Relat. Mater.,2010,19:1446-1452.
    [6] Ding M Q,Li L L,Feng J J. A Study of High Quality Free-standing Diamond Films Grown by MPCVD[J]. Appl. Surf. Sci.,2012,258:5987-5991.
    [7] Su J J,Li Y F,Ding M H,et al. A Dome-shaped Cavity Type Microwave Plasma Chemical Vapor Deposition Reactor for Diamond Films Deposition[J]. Vacuum,2014,107:51-55.
    [8] Thumm,Manfred. MPACVD Diamond Windows for High-power and Long pulse Millimeter wave Transmission[J]. Diam. Relat. Mater.,2001,10:1692-1699.
    [9] Thumm M,Arnold A,Heidinger R,et al. Status Report on CVD Diamond Window Development for High Power ECRH[J]. Fusion Engineering and Design,2001,53(1-4):517-524.
    [10] Mallik A K,Pala K S,Dandapat N,et al. Influence of the Microwave Plasma CVD Reactor Parameters on Substrate Thermal Management for Growing Large Area Diamond Coatings inside a 915 MHz and Moderately Low Power Unit[J]. Diam. Relat. Mater.,2012,30(30):53-61.
    [11] Mallik A K,Bysakh S,Dutta S,et al. Correlation between Optical Emission Spectra and the Process Parameters of a 915 MHz Microwave Plasma CVD Reactor Used for Depositing Polycrystalline Diamond Coatings[J]. Sadhana,2014,39(4):957-970.
    [12] Mallik A K,Bysakh S,Pal K S,et al. Large Area Deposition of Polycrystalline Diamond Coatings by Microwave Plasma CVD[J]. Transactions of the indian ceramic society.,2013,72(4):225-232.
    [13] Füner M,Wild C,Koidl P. Novel Microwave Plasma Reactor for Diamond Synthesis[J]. Applied Physics Letters,1998,72(10):1149-1151.
    [14] Ando Y,Yokota Y,Tachibana T,A,et al. Large Area Deposition of <100>-Textured Diamond Films by a 60-kW Microwave Plasma CVD Reactor[J]. Diam. Relat. Mater.,2002,11:596-600.
    [15] Kobashi K,Nishibayashi Y,Yokota Y,et al. R&D of Diamond Films in the Frontier Carbon Technology Project and related topics[J]. Diam.Relat. Mater.,2003,12:233-240.
    [16] Grotjohn T,Liske R,Hassouni K,et al. Scaling Behavior of Microwave Reactors and Discharge Size for Diamond Deposition[J]. Diam. Relat.Mater.,2005,14(3):288-291.
    [17] King D,Yaran M K,Schuelke T,et al. Scaling the Microwave Plasma-assisted Chemical Vapor Diamond Deposition Process to 150-200 mm Substrates[J]. Diam. Relat. Mater.,2008,17(4):520-524.
    [18] Tachibana T,Ando Y,Watanabe A,et al. Diamond Films Grown by a 60 k W Microwave Plasma Chemical Vapor Deposition System[J]. Diam.Relat. Mater.,2001,10(9-10):1569-1572.
    [19] Silva F,Hassouni K,Bonin X,et al. Microwave Engineering of Plasma Assisted CVD Reactors for Diamond Deposition[J]. Journal of Physics:Conden. Matter.,2009,21:364202.
    [20] Li Y F,Su J J,Liu Y Q,et al. Design of a New TM021Mode Cavity Type MPCVD Reactor for Diamond Film Deposition[J]. Diam. Relat.Mater.,2014,44:88-94.
    [21] Li X J,Tang W Z,Yu S W,et al. Design of Novel Plasma Reactor for Diamond Film Deposition[J]. Diam. Relat. Mater.,2011,20(4):480-484.
    [22] Li Y F,Su J J,Liu Y Q,et al. A Circumferential Antenna Ellipsoidal Cavity Type MPCVD Reactor Developed for Diamond Film Deposition[J].Diam. Relat. Mater.,2015,51:24-29.
    [23] Weng J,Xiong L W,Wang J H,et al. Investigation of Depositing Large Area Uniform Diamond Films in Multimode MPCVD Chamber[J].Diamond. Relat. Mater.,2012,30:15-19.
    [24] Li Y F,An X M,Liu X C,et al. A 915 MHz/75 kW Cylindrical Cavity Type Microwave Plasma Chemical Vapor Deposition Reactor with a Ladder Shaped Circumferential Antenna Developed for Growing Large Area Diamond Films[J]. Diamond. Relat. Mater.,2017,78:67-72.
    [25] Worner E,Wild C,Müller-Sebert W,et al. Thermal Conductivity of CVD Diamond Films:High-precision,Temperature-resolved Measurements[J]. Diamond. Relat. Mater.,1996,5(6-8):688-692.
    [26]吕反修.大面积光学级金刚石自支撑膜制备、性能及其在高技术领域应用前景[J].中国表面工程,2010,23(3):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700