用户名: 密码: 验证码:
反复短暂缺血可抑制坐骨神经损伤模型大鼠失神经支配的腓肠肌萎缩
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Repeated transient ischemia inhibits denervated gastrocnemius atrophy in rat models of sciatic nerve injury
  • 作者:周晓彬 ; 王东 ; 林朋朝 ; 高伟静 ; 姬艳林 ; 祁欢 ; 李静 ; 周君琳
  • 英文作者:Zhou Xiaobin;Wang Dong;Lin Pengzhao;Gao Weijing;Ji Yanlin;Qi Huan;Li Jing;Zhou Junlin;Third Department of Traumatology, Shijiazhuang Third Hospital;Department of Orthopedic Traumatology, Beijing Chao-Yang Hospital, Capital Medical University;Second Department of Traumatology, Shijiazhuang Third Hospital;Department of Traditional Chinese Medicine, Hebei Provincial Geriatric Hospital;
  • 关键词:反复短暂缺血 ; 腓肠肌 ; 血管内皮生长因子 ; 电生理 ; 肌萎缩 ; 坐骨神经损伤 ; 大鼠
  • 英文关键词:repeated transient ischemia;;gastrocnemius;;vascular endothelial growth factor;;electrophysiology;;muscle atrophy;;sciatic nerve injury;;rats
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:石家庄市第三医院创伤三科;首都医科大学附属北京朝阳医院创伤骨科;石家庄市第三医院创伤二科;河北省老年病医院中医科;
  • 出版日期:2019-06-25
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.880
  • 基金:河北省医学科学研究重点课题计划(20181060),项目负责人:周晓彬;; 北京市科学技术委员会(Z161100000116080),项目负责人:周君琳~~
  • 语种:中文;
  • 页:XDKF201923012
  • 页数:6
  • CN:23
  • ISSN:21-1581/R
  • 分类号:65-70
摘要
背景:既往实验表明反复短暂缺血可以诱导肌肉的缺血耐受,达到营养靶器官的作用。目的:探讨反复短暂缺血对坐骨神经损伤模型大鼠失神经支配腓肠肌细胞萎缩的抑制作用。方法:60只8周龄SD大鼠,由北京维通利华动物技术有限公司提供,实验过程得到首都医科大学动物实验伦理委员会批准(伦理号AEEI-2017-055)。随机将大鼠分为3组,实验组和对照组大鼠均建立坐骨神经损伤模型,实验组患侧下肢给予每天1次3×(10min缺血/10min再灌注);对照组:吻合神经后不给予反复短暂缺血处理;假手术组:未损伤神经,给予患侧肢体每天1次3×(10 min缺血/10 min再灌注)。比较2周及4周时3组间腓肠肌湿质量维持率,腓肠肌苏木精-伊红染色,坐骨神经电生理及ELISA测定腓肠肌内血管内皮生长因子的含量。结果与结论:①电生理显示4周时实验组与对照组均未检测到腓肠肌的动作电位及潜伏期;②腓肠肌湿质量维持率检测结果显示实验组较对照组明显增加(P <0.05),假手术组优于实验组和对照组(P <0.01);③腓肠肌纤维横截面积结果显示实验组肌纤维化较对照组明显减轻(P <0.05);④ELISA检测结果显示实验组及假手术组腓肠肌内血管内皮生长因子含量均显著高于对照组(P <0.05);⑤结果说明,神经损伤后4周内,反复短暂缺血可以有效提高腓肠肌内源性血管内皮生长因子的表达,从而发挥内源性血管内皮生长因子抑制腓肠肌萎缩的作用。
        BACKGROUND: Preliminary study has shown that repeated transient ischemia may induce muscle ischemia tolerance to enrich target organs.OBJECTIVE: To investigate the inhibitory effect of repeated transient ischemia on atrophy of denervated gastrocnemius muscle cells in a rat model of sciatic nerve injury.METHODS: Sixty Sprague-Dawley rats aged 8 weeks were provided by Beijing Weitong Lihua Animal Technology Co., Ltd., and the study was approved by the Laboratory Animal Ethics Committee of Capital Medical University, approval number: AEEI-2017-055. The rats were randomly divided into control group(sciatic nerve injury model), experimental group(sciatic nerve injury model plus 3 x(10-minute ischemia/10-minute reperfusion) and sham group [3 x(10-minute ischemia/10-minute reperfusion)]. The wet mass maintenance rate of gastrocnemius, hematoxylin-eosin staining of gastrocnemius, electrophysiology of sciatic nerve, and content of vascular endothelial growth factor in gastrocnemius detected by ELISA were compared among groups at 2 and 4 weeks.RESULTS AND CONCLUSION:(1) Electrophysiology showed that neither experimental nor control groups presented action potential or latency at 4 weeks.(2) The wet mass maintenance rate of gastrocnemius in the experimental group was significantly increased compared with the control group(P < 0.05), and the sham group was significantly superior to the experimental and control groups(P < 0.01).(3) The cross-sectional area of gastrocnemius fibers in the experimental group was significantly decreased compared with the control group(P < 0.05).(4) The content of vascular endothelial growth factor in gastrocnemius detected by ELISA in the experimental and sham groups was significantly higher than that in the control group(P < 0.05).(5) These results suggest that within 4 weeks of nerve injury, the repeated transient ischemia can effectively improve the expression of endogenous vascular endothelial growth factor in gastrocnemius, thus inhibiting its atrophy.
引文
[1]Bueno CRS,Pereira M, Favaretto IAJ, et al. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle. Einstein. 2017;15(1):71-76.
    [2]Pinheiro-Dardis CM, Erbereli BT, Gigo-Benato D, et al.Electrical stimulation delays reinnervation in denervated rat muscle. Muscle Nerve. 2017;56(6):E108-E118.
    [3]Farjah GH, Fazli F, Karimipour M, et al. The effect of bone marrow mesenchymal stem cells on recovery of skeletal muscle after neurotization surgery in rat. Iran J Basic Med Sci.2018;21(3):236-243.
    [4]Paradis-Deschenes P, Joanisse DR, Billaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake,and force in strength-trained athletes. Appl Physiol Nutr Metab. 2016;41(9):938-944.
    [5]Neumann JT, Thompson JW, Raval AP, et al. Increased bdnf protein expression after ischemic or pkc epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection. J Cereb Blood Flow Metab. 2015Jan;35(1):121-130.
    [6]Hsu ST, Yao CH, Hsu YM, et al. Effects of taxol on regeneration in a rat sciatic nerve transection model. Sci Rep.2017;7:42280
    [7]Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26(5):248-254.
    [8]Zemke D, Smith JL, Reeves MJ, et al. Ischemia and ischemic tolerance in the brain:An overview. Neurotoxicology. 2004;25(6):895-904.
    [9]Lintz JA, Dalio MB, Joviliano EE, et al. Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta Cir Bras. 2013;28(6):441-446.
    [10]Park UJ, Kim HT, Cho WH, et al. Remote ischemic preconditioning enhances the expression of genes encoding antioxidant enzymes and endoplasmic reticulum stress-related proteins in rat skeletal muscle. Vasc Specialist Int. 2016 Dec;32(4):141-149.
    [11]Liu Y, Wang D, Zhao Y, et al. Repetitive brief ischemia can promote bone healing in a rat tibia fracture model. Int J Clin Exp Med.2016;9(11):20960-20967.
    [12]Ruven C., Wu W. Muscle atrophy following peripheral nerve injury and strategies to prevent it. In:Andres Costa E.V., editor.Horizons in Neuroscience Research. Volume 28 NOVA Science Publishers; Hauppauge, NY, USA:2017.
    [13]Tuffaha SH, Budihardjo JD, Sarhane KA, et al. Growth hormone therapy accelerates axonal regeneration, promotes motor reinnervation, and reduces muscle atrophy following peripheral nerve injury. Plast Reconstr Surg. 2016; 137(6):1771-1780.
    [14]Arsic N, Zacchigna S, Zentilin L, et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo.Mol Ther. 2004;10(5):844-854.
    [15]Frey SP, Jansen H, Raschke MJ, et al. Vegf improves skeletal muscle regeneration after acute trauma and reconstruction of the limb in a rabbit model. Clin Orthop Relat Res. 2012 Dec;470(12):3607-3614.
    [16]Rissanen TT, Vajanto I, Hiltunen MO, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2(kdr/flk-1)in ischemic skeletal muscle and its regeneration. m J Pathol. 2002;160(4):1393-1403.
    [17]Nishimoto H, Inui A, Ueha T, et al. Transcutaneous carbon dioxide application with hydrogel prevents muscle atrophy in a rat sciatic nerve crush model J Orthop Res. 2018;36(6):1653-1658.
    [18]Coban YK, Ciralik H, Kurutas EB. Ischemic preconditioning reduces the severity of ischemia-reperfusion injury of peripheral nerve in rats. J Brachial Plex Peripher Nerve Inj.2006;1:2.
    [19]Johnson EO, Zoubos AB, Soucacos PN. Regeneration and repair of peripheral nerves. Injury. 2005,36 Suppl 4:S24-29.
    [20]Lee SK, Wolfe SW. Peripheral nerve injury and repair. J Am Acad Orthop Surg. 2000;8(4):243-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700