用户名: 密码: 验证码:
分子印迹涂层的茉莉酸类植物激素固相微萃取应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of molecularly imprinted coating in solid phasemicroextraction of plant hormones
  • 作者:马茜文 ; 周灿 ; 黄品 ; 党雪平
  • 英文作者:MA Xiwen;ZHOU Can;HUANG Pin;DANG Xueping;College of Chemistry and Chemical Engineering,Hubei University;Luotian No.1 Middle School;
  • 关键词:气相色谱 ; 顶空固相微萃取 ; 分子印记 ; 聚3 ; 4-乙烯二氧噻吩 ; 茉莉酮 ; 茉莉酸甲酯
  • 英文关键词:gas chromatography;;headspace solid phase microextraction;;molecular imprinting;;poly(3,4-ethylene dioxythiophene);;jasmone;;methyl jasmonate
  • 中文刊名:HDZK
  • 英文刊名:Journal of Hubei University(Natural Science)
  • 机构:湖北大学化学化工学院;罗田县第一中学;
  • 出版日期:2019-07-04
  • 出版单位:湖北大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.156
  • 基金:国家自然科学基金(61301048);; 湖北省创新研究团队自然科学基金(2011CDA111)资助
  • 语种:中文;
  • 页:HDZK201904017
  • 页数:8
  • CN:04
  • ISSN:42-1212/N
  • 分类号:108-115
摘要
通过电化学方法制备以顺式-茉莉酮(CJ)为模板的分子印记聚3,4-乙烯二氧噻吩涂层(CJ-MI/PEDOT),与气相色谱(GC)联用,建立植物组织中茉莉酸类植物激素(JAs)的CJ-MI/PEDOT-GC分离分析方法,优化萃取条件如盐度、搅拌速率、萃取时间和萃取温度.方法检出限(LOD)为2. 0 ng m L-1,线性范围为8 1 000 ng·m L-1(R2=0. 992 1).该方法提高了PEDOT涂层对于目标物的选择性,已成功应用于植物组织中茉莉酸类植物激素的检测.
        A molecular imprinted poly( 3,4-ethylenedioxythiophene) coating( CJ-MI/PEDOT) using cisjasmone( CJ) as template was prepared by electrochemical method. And coupling with gas chromatography( GC),a CJ-MI/PEDOT-GC method for the separation and analysis of jasmonates( JAs) in plant tissues was established. The extraction conditions, such as salinity, stirring rate, extraction time and extraction temperature,were optimized. The limit of detection( LOD) was 2. 0 ng·m L-1 and the linear range was 8—1 000 ng·m L-1( R2= 0. 992 1). The method improves the selectivity of the PEDOT coating,and has been successfully applied to the detection of jasmonic plant hormones in plant tissues.
引文
[1]Jin H H,Zhu Z Q. Temporal and spatial view of jasmonate signaling[J]. Trends in Plant Science,2017,22:451-454.
    [2]Jang G,Shim J S,Jung C,et al. Volatile methyl jasmonate is a transmissible form of jasmonate and its biosynthesis is involved in systemic jasmonate response in wounding[J]. Plant Biotechnology Reports,2014,8:409-419.
    [3]王芳,陈子林.茉莉酸类植物激素分析研究进展[J].生命科学,2010,22:45-58.
    [4]Arthur C L,Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical chemistry,1990,62:2145-2148.
    [5]Meyer R,Rautenbach G F,Dubery I A. Identification and quantification of methyl jasmonate in leaf volatiles of Arabidopsis thaliana using solid-phase microextraction in combination with gas chromatography and mass spectrometry[J]. Phytochemical Analysis,2003,14:155-159.
    [6] Takuya K,Koji O. Recent progress in molecularly imprinted media by new preparation concepts and methodological approaches for selective separation of targeting compounds[J]. Tr AC Trends in Analytical Chemistry,2016,81:102-109.
    [7]Rajabi K A,Rashidpur A. Development of a fiber coating based on molecular sol-gel imprinting technology for selective solid-phase micro extraction of caffeine from human serum and determination by gas chromatography/mass spectrometry[J].Analytica Chimica Acta,2012,727:20-25.
    [8] Li J W,Wang Y L,Yan S,et al. Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits[J]. Food Chemistry,2016,192:260-267.
    [9]Liu Y C,Liu Y J,Liu Z M,et al.β-Cyclodextrin molecularly imprinted solid-phase microextraction coatings for selective recognition of polychlorophenols in water samples[J]. Analytical and Bioanalytical Chemistry,2017,410:509-519.
    [10]Carlberg C,Chen X W,Inganas O. Ionic transport and electronic structure in poly(3,4-ethylenedioxythiophene)[J].Solid State Ionics,1996,85:73-78.
    [11]Liu M,Wen Y P, Li D, et al. A stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid[J]. Sensors and Actuators B:Chemical,2011,159:277-285.
    [12] Abirama S P L,Manisankar P. Development of ultrasensitive surfactants doped poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotube sensor for the detection of pyrethroids and an organochlorine pesticide[J]. Journal of Applied Electrochemistry,2010,41:29-37.
    [13] Lu L M,Zhang O,Xu J K,et al. A facile one-step redox route for the synthesis of graphene/poly(3,4-ethylenedioxythiophene)nanocomposite and their applications in biosensing[J]. Sensors and Actuators B:Chemical,2013,181:567-574.
    [14]Si W M,Lei W,Zhang Y H,et al. Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene)film and its electrochemical sensing of catechol and hydroquinone[J]. Electrochimica Acta,2012,85:295-301.
    [15]Liu G B,Deng C X,Liao X N,et al. Sensitive amperometric detection of l-glutamic acid in agricultural and biological samples using the biocompatible, high-effective and integrated biocompatible poly(3,4-ethylenedioxythiophene)nanocomposite bioelectrode[J]. International Journal of Electrochemical Science,2016,11:650-664.
    [16]Colleran J J,Breslin C B. Simultaneous electrochemical detection of the catecholamines and ascorbic acid at PEDOT/S-β-CD modified gold electrodes[J]. Journal of Electroanalytical Chemistry,2012,667:30-37.
    [17]Wu L P,Xu J K,Lu L M,et al. Fabrication of nanostructured PEDOT clusters usingβ-cyclodextrin as substrate and applied for simultaneous determination of hyperoside and shikonin[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,482:203-212.
    [18] Pardieu E,Cheap H,Vedrine C,et al. Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine[J]. Analytica Chimica Acta,2009,649:236-245.
    [19]Banitaba M H,Mohammadi A A,Hosseiny D S S,et al. Preparation and evaluation of a novel solid-phase microextraction fiber based on poly(3,4-ethylenedioxythiophene)for the analysis of OCPs in water[J]. Analytical Methods,2011,3:2061-2067.
    [20]Ling X,Zhang W P,Chen Z L. Electrochemically modified carbon fiber bundles as selective sorbent for online solid-phase microextraction of sulfonamides[J]. Microchimica Acta,2015,183:813-820.
    [21]Ma Y Y,Zhao F Q,Zeng B Z. Electrodeposition of poly(3,4-ethylenedioxythiophene)on a stainless steel wire for solid phase microextraction and GC determination of some esters with high boiling points[J]. Talanta,2013,104:27-31.
    [22]Banitaba M H,Hosseiny D S S,Kazemi M S. Comparison of direct,headspace and headspace cold fiber modes in solid phase microextraction of polycyclic aromatic hydrocarbons by a new coating based on poly(3,4-ethylenedioxythiophene)graphene oxide composite[J]. Journal of Chromatography A,2014,1325:23-30.
    [23] Ling X,Chen Z L. Electrochemically deposited conductive composite sorbent for highly efficient online solid-phase microextraction of jasmonates in plant samples[J]. Talanta,2017,170:337-342.
    [24] Wu M,Wang L Y,Zeng B Z, et al. Ionic liquid polymer functionalized carbon nanotubes-doped poly(3,4-ethylenedioxythiophene)for highly-efficient solid-phase microextraction of carbamate pesticides[J]. Journal of Chromatography A,2016,1444:42-49.
    [25]Wu M,Zhang H B,Zhao F Q,et al. A novel poly(3,4-ethylenedioxythiophene)-ionic liquid composite coating for the headspace solid-phase microextraction and gas chromatography determination of several alcohols in soft drinks[J]. Analytica Chimica Acta,2014,850:41-48.
    [26]Xu H L,Li Y,Jiang D Q,et al. Hydrofluoric acid etched stainless steel wire for solid-phase microextraction[J].Analytical Chemistry,2009,81:4971-4977.
    [27]Buchholz K D,Pawliszyn J. Determination of phenols by solid-phase microextraction and gas chromatographic analysis[J].Environmental science&technology,1993,27:2844-2848.
    [28]欧阳钢锋,Pawliszyn J.固相微萃取原理与应用[M].北京:化学工业出版社,2012:19-21.
    [29]Gan T,Hu C G,Chen Z L,et al. Fabrication and application of a novel plant hormone sensor for the determination of methyl jasmonate based on self-assembling of phosphotungstic acid-graphene oxide nanohybrid on graphite electrode[J].Sensors and Actuators B:Chemical,2010,151:8-14.
    [30]Quinet M,Bataille G,Dobrev P I,et al. Transcriptional and hormonal regulation of petal and stamen development by STAMENLESS,the tomato(Solanum lycopersicum L.)orthologue to the B-class APETALA3 gene[J]. Journal of Experimental Botany,2014,65:2243-2256.
    [31]Ma W,Fu S,Hashi Y,et al. Determination of chiral jasmonates in flowers by gc/ms after monolithic material sorptive extraction[J]. Journal of Agricultural and Food Chemistry,2013,61:6288-6292.
    [32]Yu X H,Ling X,Zou L,et al. Novel polymeric monolith materials with aβ-cyclodextrin-graphene composite for the highly selective extraction of methyl jasmonate[J]. Journal of Separation Science,2017,40:1556-1563.
    [33]Zhang W P,Du J,Su C,et al. Development ofβ-cyclodextrin-modified silica and polyporous polymer particles for solidphase extraction of methyl jasmonate in aqueous and plant samples[J]. Analytical Letters,2013,46:900-911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700