用户名: 密码: 验证码:
气候因素对广东省登革热流行影响的非线性效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nonlinear effects of climate factors on dengue epidemic in Guangdong province, China
  • 作者:侯祥 ; 刘可可 ; 刘小波 ; 常罡 ; 许磊 ; 刘起勇
  • 英文作者:HOU Xiang;LIU Ke-ke;LIU Xiao-bo;CHANG Gang;XU Lei;LIU Qi-yong;Shaanxi Institute of Zoology;State Key Laboratory of Infections Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases,WHO Collaborating Centre for Vector Surveillance and Management;
  • 关键词:登革热 ; 非线性 ; 气候因素 ; 广义可加模型
  • 英文关键词:Dengue fever;;Nonlinear;;Climate factor;;Generalized additive model
  • 中文刊名:ZMSK
  • 英文刊名:Chinese Journal of Vector Biology and Control
  • 机构:陕西省动物研究所;中国疾病预防控制中心传染病预防控制所传染病预防控制国家重点实验室感染性疾病诊治协同创新中心世界卫生组织媒介生物监测与管理合作中心;
  • 出版日期:2018-12-06 20:18
  • 出版单位:中国媒介生物学及控制杂志
  • 年:2019
  • 期:v.30
  • 基金:中国检验检疫科学研究院科研协作项目(2016YFC1200803);; 陕西省重点研发计划项目(2018NY-135);; 陕西省科学院科技计划项目(2018K-04)~~
  • 语种:中文;
  • 页:ZMSK201901005
  • 页数:6
  • CN:01
  • ISSN:10-1522/R
  • 分类号:30-35
摘要
目的分析广东省佛山、广州、汕头、深圳、珠海5个市的气候因素、蚊虫密度对登革热流行的影响效应。方法登革热病例数据来源于国家法定传染病报告系统,媒介伊蚊密度数据来源于登革热媒介伊蚊监测系统,并采用广义可加模型对2005-2015年登革热和伊蚊密度监测数据进行分析。结果发现登革热的流行存在显著的正向自我调节效应(F_(1.96,10.84)=6 588.650,P<0.01),蚊虫密度与登革热之间存在显著的非线性正效应(F_(2.98,10.84)=21.810,P<0.01),蚊虫密度显著影响登革热的流行。当月平均最高气温对登革热流行存在显著的非线性正效应(F_(1.91,10.84)=215.570,P<0.01),登革热的发生随着温度升高而升高。上月降雨天数对登革热发生存在显著的非线性效应(F_(2.99,10.84)=101.590,P<0.01),当降雨天数<15 d时,两者之间显现为正相关,登革热的发生随着降雨天数增加而升高,反之显现为负相关。结论温度和降雨对广东省登革热的流行风险有调节作用,它们主要通过改变蚊虫种群密度,影响种群变化,从而达到影响登革热的流行和暴发,总体而言登革热的发生随气候变化而明显上升。
        Objective To analyze the effects of climate factors and mosquito density on dengue epidemic in Foshan,Guangzhou, Shantou, Shenzhen, and Zhuhai in Guangdong province, China. Methods Dengue surveillance data were obtained from the China National Notifiable Infectious Diseases Reporting System. Aedes density data were collected from the Dengue Vector Aedes Surveillance System. A generalized additive model was used to analyze dengue and Aedes density surveillance data from 2005 to 2015. Results The model results indicated that dengue fever showed a significant positive self-regulation effect(F_(1.96, 10.84)= 6 588.650,P<0.01). Mosquito density was significantly positively associated with dengue incidence(F_(2.98,10.84)= 21.810, P<0.01). Mean maximum temperature of lag time 0 month showed a significantly positive nonlinear association with dengue incidence(F_(1.91,10.84) = 215.570,P<0.01). Days with precipitation of the previous month exhibited a significantly n-shape effect on dengue incidence(F_(299,10.84)=101.590,P<0.01), which is positively associated with dengue incidence as days with precipitation was below 15 days, but negatively associated above the threshold.Conclusion Temperature and precipitation regulate the risk of dengue epidemic in Guangdong province. They affect the epidemic and outbreak of dengue fever mainly via changing mosquito population density and population dynamics. Overall,dengue incidence significantly increases with the changes in climate.
引文
[1] Kyle JL,Harris E. Global spread and persistence of dengue[J].Annu Rev Microbiol,2008,62(1):71-92. DOI:10.1146/annurev.micro.62.081307.163005.
    [2]梁文佳,何剑峰.登革热的预防与控制[J].华南预防医学,2005,31(2):76-79. DOI:10.3969/j.issn.1671-5039.2005.02.031.
    [3] Luo L,Liang HY,Hu YS,et al. Epidemiological,virological,and entomological characteristics of dengue from 1978 to 2009 in Guangzhou,China[J]. J Vector Ecol,2012,37(1):230-240.DOI:10.1111/j.1948-7134.2012.00221.x.
    [4] Sang SW,Yin WW,Bi P,et al. Predicting local dengue transmission in Guangzhou,China,through the influence of imported cases,mosquito density and climate variability[J].PLoS One,2014,9(7):e102755. DOI:10.1371/journal.pone.0102755.
    [5] Zhang H,Zhang YR,Hamoudi R,et al. Spatiotemporal characterizations of dengue virus in mainland China:insights into the whole genome from 1978 to 2011[J]. PLoS One,2014,9(2):e87630. DOI:10.1371/journal.pone.0087630.
    [6] Li B,Morton LC,Liu QY. Climate change and mosquito-borne diseases in China:a review[J]. Global Health,2013,9:10. DOI:10.1186/1744-8603-9-10.
    [7] Bhatt S,Gething PW,Brady OJ,et al. The global distribution and burden of dengue[J]. Nature,2013,496(7446):504-507. DOI:10.1038/nature12060.
    [8] Che-Him N,Ghazali KM,Saifullah Rusiman M,et al. Spatiotemporal modelling of dengue fever incidence in Malaysia[J]. J Phys,2018,995(1):012003. DOI:10.1088/1742-6596/995/1/012003.
    [9] Xu HY,Fu X,Lee LK,et al. Statistical modeling reveals the effect of absolute humidity on dengue in Singapore[J]. PLoS Negl Trop Dis,2014,8(5):e2805. DOI:10.1371/journal.pntd.0002805.
    [10] Huber JH,Childs ML,Caldwell JM,et al. Seasonal temperature variation influences climate suitability for dengue,chikungunya,and Zika transmission[J]. PLoS Negl Trop Dis,2018,12(5):e0006451. DOI:10.1371/journal.pntd.0006451.
    [11] Betanzos-Reyes R,Rodríguez MH,Romero-Martínez M,et al.Association of dengue fever with Aedes spp. abundance and climatological effects[J]. Salud Publica Mex,2018,60(1):12-20. DOI:10.21149/8141.
    [12] Sutherst RW. Global change and human vulnerability to vectorborne diseases[J]. Clin Microbiol Rev,2004,17(1):136-173.DOI:10.1128/CMR.17.1.136-173.2004.
    [13] Xu L,Stige LC,Chan KS,et al. Climate variation drives dengue dynamics[J]. Proc Natl Acad Sci USA,2017,114(1):113-118.DOI:10.1073/pnas.1618558114.
    [14] Wu X,Lang L,Ma W,et al. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou,China[J]. Sci Total Environ,2018,628-629:766-771. DOI:10.1016/j.scitotenv.2018.02.136.
    [15] Li ZJ,Yin WW,Clements A,et al. Spatiotemporal analysis of indigenous and imported dengue fever cases in Guangdong province,China[J]. BMC Infect Dis,2012,12(1):132-141.DOI:10.1186/1471-2334-12-132.
    [16] Wood SN. Generalized additive models:an introduction with R[M]. Boca Raton,FL:Chapman&Hall/CRC,2006:100-202.
    [17] Stige LC,Ottersen G,Brander K,et al. Cod and climate:effect of the North Atlantic Oscillation on recruitment in the North Atlantic[J]. Mar Ecol Prog Ser,2006,325:227-241. DOI:10.3354/meps325227.
    [18] Jing QL,Cheng Q,Marshall JM,et al. Imported cases and minimum temperature drive dengue transmission in Guangzhou,China:evidence from ARIMAX model[J]. Epidemiol Infect,2018,146(10):1226-1235. DOI:10.1017/S0950268818001176.
    [19] Sun JM,Lin JF,Yan JY,et al. Dengue virus serotype 3 subtype III,Zhejiang province,China[J]. Emerging Infect Dis,2011,17(2):321-323. DOI:10.3201/eid1702.100396.
    [20] Shang CS,Fang CT,Liu CM,et al. The role of imported cases and favorable meteorological conditions in the onset of dengue epidemics[J]. PLoS Negl Trop Dis,2010,4(8):e775. DOI:10.1371/journal.pntd.0000775.
    [21] Zhu GH,Xiao JP,Zhang B,et al. The spatiotemporal transmission of dengue and its driving mechanism:a case study on the 2014 dengue outbreak in Guangdong,China[J]. Sci Total Environ,2018,622-623:252-259. DOI:10.1016/j.scitotenv.2017.11.314.
    [22]樊景春,刘起勇.气候变化对登革热传播媒介影响研究进展[J].中华流行病学杂志,2013,34(7):745-749. DOI:10.3760/cma.j.issn.0254-6450.2013.07.020.
    [23]张萌,邓爱萍,李剑森,等. 2012-2017年广东省登革热疫情流行特点与趋势[J].中国病毒病杂志,2018,8(4):282-287.DOI:10.16505/j.2095-0136.2018.0067.
    [24] Rossi G,Karki S,Smith RL,et al. The spread of mosquito-borne viruses in modern times:a spatio-temporal analysis of dengue and chikungunya[J]. Spat Spatio-temporal Epidemiol,2018,26:113-125. DOI:10.1016/j.sste.2018.06.002.
    [25] Patz JA,Epstein PR,Burke TA,et al. Global climate change and emerging infectious diseases[J]. JAMA,1996,275(3):217-223. DOI:10.1001/jama.1996.03530270057032.
    [26] Xiao FZ,Zhang Y,Deng YQ,et al. The effect of temperature on the extrinsic incubation period and infection rate of Dengue virus serotype 2 infection in Aedes albopictus[J]. Arch Virol,2014,159(11):3053-3057. DOI:10.1007/s00705-014-2051-1.
    [27] Farjana T,Tuno N,Higa Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus[J]. Med Vet Entomol,2012,26(2):210-217.DOI:10.1111/j.1365-2915.2011.00971.x.
    [28] Focks DA,Brenner RJ,Hayes J,et al. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts[J]. Am J Trop Med Hyg,2000,62(1):11-18. DOI:10.4269/ajtmh.2000.62.11.
    [29] Scott TW,Amerasinghe PH,Morrison AC,et al. Longitudinal studies of Aedes aegypti(Diptera:Culicidae)in Thailand and Puerto Rico:blood feeding frequency[J]. J Med Entomol,2000,37(1):89-101. DOI:10.1603/0022-2585-37.1.89.
    [30] Patz JA,Martens WJ,Focks DA,et al. Dengue fever epidemic potential as projected by general circulation models of global climate change[J]. Environ Health Perspect,1998,106(3):147-153. DOI:10.1289/ehp.98106147.
    [31] Schreiber KV. An investigation of relationships between climate and dengue using a water budgeting technique[J]. Int J Biometeorol,2001,45(2):81-89. DOI:10.1007/s004840100090.
    [32] Wu PC,Lay JG,Guo HR,et al. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan[J]. Sci Total Environ,2009,407(7):2224-2233. DOI:10.1016/j.scitotenv.2008.11.034.
    [33]?str?m C,Rockl?v J,Hales S,et al. Potential distribution of dengue fever under scenarios of climate change and economic development[J]. Ecohealth,2012,9(4):448-454. DOI:10.1007/s10393-012-0808-0.
    [34] Russell RC,Currie BJ,Lindsay MD,et al. Dengue and climate change in Australia:predictions for the future should incorporate knowledge from the past[J]. Med J Aust,2009,190(5):265-268.
    [35] Githeko AK,Lindsay SW,Confalonieri UE,et al. Climate change and vector-borne diseases:a regional analysis[J]. Bull World Health Organ,2000,78(9):1136-1147.
    [36] Morin CW,Comrie AC,Ernst K. Climate and dengue transmission:evidence and implications[J]. Environ Health Perspect,2013,121(11/12):1264-1272. DOI:10.1289/ehp.1306556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700