用户名: 密码: 验证码:
GF-3全极化影像在地表浅覆盖区进行地质构造解译的新方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New method of structural interpretation in meadow covering based on GaoFen-3 Pol-SAR images
  • 作者:涂宽 ; 文强 ; 谌华 ; 于飞 ; 谷鑫志
  • 英文作者:TU Kuan;WEN Qiang;SHEN Hua;YU Fei;GU Xinzhi;Twenty First Century Aerospace Technology Co., Ltd.;
  • 关键词:高分三号 ; 全极化SAR ; 浅覆盖区 ; 断裂构造 ; 环带构造
  • 英文关键词:GF-3;;Pol-SAR;;meadow covering;;structure interpretation;;Loop structure
  • 中文刊名:YGXB
  • 英文刊名:Journal of Remote Sensing
  • 机构:二十一世纪空间技术应用股份有限公司;
  • 出版日期:2019-03-25
  • 出版单位:遥感学报
  • 年:2019
  • 期:v.23
  • 基金:国家重点研发计划(编号:2017YFB0503903)~~
  • 语种:中文;
  • 页:YGXB201902006
  • 页数:9
  • CN:02
  • ISSN:11-3841/TP
  • 分类号:63-71
摘要
地质构造信息对地质矿产调查具有重要意义,野外实测和光学遥感等常规手段在一些地表浅覆盖区获取的地质构造信息十分有限,而合成孔径雷达(SAR)对地表具有一定的穿透性,在探测地表浅层覆盖区域的地质构造特征中具有独特优势。利用高分三号(GF-3)全极化影像,在典型的地表浅层覆盖区域,开展了断裂构造等信息的解译探索,提出了一种地表浅覆盖区域地质构造解译的新方法。首先对西藏改则、林芝、贵阳、北京千家店等4个研究区内的断裂构造和环带构造进行分析;接着,提出了GF-3全极化影像用于浅覆盖区地质解译的处理流程,通过引入DEM数据对GF-3影像进行地形校正,充分利用微地形微地貌特征,并采用不同极化方式的RGB合成,增强了影像的判读性,并进行地质构造解译;最后,将解译结果与1∶5万实测数据进行对比,断层的位置和方向与实测结果基本一致,同时获取了大量野外实测未能探明的浅覆盖层以下的断层信息,进一步丰富了研究区的地质构造信息。结果表明,GF-3全极化影像可用于浅覆盖区的地质构造解译,并且具有野外实测和光学遥感等常规手段所不能替代的独特优势。
        Synthetic aperture radar(SAR) has been adopted in this study to compensate for the shortage of obtaining structural information below the meadow covering. Structural information is obtained through field surveying and special remote sensing images. Influenced by weathering and meadow covering, the structural information in the meadow covering environment acquired through these methods is limited. Given its long wavelength, SAR has the advantage of penetrability, which can help in detecting structural information below the meadow covering. The technology can efficiently compensate for the disadvantage of spatial remote sensing and field observing in meadow covering area. This study aims(1) to establish a new method of structural interpretation in meadow covering based on GaoFen(GF)-3 Pol-SAR images;(2) to verify the application of GF-3 Pol-SAR images in four different atmosphere districts, namely, Gerze in Tibet, Nyingchi in Tibet, Qianjiadian in Beijing, and Sinan County in Guizhou Province; and(3) to interpret the faults and circular structures systematically in these areas and verify the authenticity and accuracy of interpretation through GF-3 SAR images by comparing with the 150000 field mapping.GF-3 C-band SAR images have been used in detecting geology structures in this study because of its penetrability. GF-3 SAR images have the most observing modes worldwide. GF-3 full polarization mode images are utilized in this study to optimize the use of information in different polarization modes. To use the GF-3 SAR images effectively and accurately, the data processing procedure, including focusing,multi-looking, filtering, and geocoding, has been completed. The effect from speckle in the images can be effectively reduced by Lee filtering. Geocoding can ensure the accuracy of spatial information. The 90 m SRTM DEM data are obtained in the geocoding process to eliminate the topographic influence, which helps in optimizing the use of micro-topographic features to interpretation structures. On the contrary,the structures have different features in various polarization images. To optimize the use of features in different polarization images, the RG-B combination of various polarization directions is used in the study. As the cross polarization has more peak features than the straight polarization, the cross polarization images have been merged as R channel and the straight polarization images have been merged as G and B channels. The interpretation capability of GF-3 SAR images has been increased by combining different polarization images. In this work,four study areas in different covering environments have been selected. The interpretation keys of faults and circular structures in study areas can be established on the basis of the combination of different polarization images, by analyzing the unique color, topography, and hydrographic features of faults and circular structures. The structural features have been systematically interpreted on the basis of the interpretation keys in four study areas. To analyze the authenticity and accuracy of interpretation through GF-3 SAR images, the structural features have been compared with the faults in 150000 mapping.The color combination of different polarization images in four study areas has been acquired through data processing. Interpretation keys of faults and circular structures in study areas have been established by analyzing the unique color, topography, and hydrographic features of faults and circular structures. The structures in study areas have been interpreted systematically. Structural feature maps interpreted through GF-3 SAR images in study areas have been drawn. The faults in 150000 field maps are contained in the structures interpreted through GF-3 SAR images, compared with 150000 field mapping. The position of faults in 150000 mapping fits the position of faults interpreted through GF-3 SAR images. The number of faults interpreted through GF-3 SAR images is largely increased.In this study, SAR has been adopted to detect geology structures. GF-3 SAR images have been used in four study areas, namely, Gerze in Tibet, Nyingchi in Tibet, Qianjiadian in Beijing, and Sinan County in Guizhou Province. By investigating structural interpretation through GF-3 SAR images in study areas, the following conclusions can be obtained:(1) A new method of structural interpretation in meadow covering based on GF-3 Pol-SAR images has been established.(2) The interpretation keys of faults and circular structures in four study areas,namely, Gerze in Tibet, Nyingchi in Tibet, Qianjiadian in Beijing, and Sinan County in Guizhou Province, based on GF-3 SAR images have been established.(3) The faults and circular structures in study areas have been interpreted systematically through GF-3 SAR images. The faults in 150000 map have been contained in structural features interpreted through GF-3 SAR images, compared with 150000 field mapping. The number of faults interpreted through GF-3 SAR images is largely increased. These increased faults are mostly structures below the meadow covering that cannot be observed through field work and special remote sensing images. The structural interpretation in four study areas demonstrates its authenticity and accuracy through GF-3 SAR images. The method based on GF-3 SAR images can effectively compensate for the disadvantage of field work and spatial remote sensing in meadow covering.
引文
Carter A and Clift P D.2008.Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event?.Comptes Rendus Geoscience,340(2/3):83-93[DOI:10.1016/j.crte.2007.08.011]
    Hou Z Q,Song Y C,Li Z,Wang Z L,Yang Z M,Yang Z S,Liu Y C,Tian S H,He L Q,Chen K X,Wang F C,Zhao C X,Xue W Wand Lu H F.2008.Thrust-controlled,sediments-hosted Pb-Zn-AgCu deposits in eastern and northern margins of Tibetan orogenic belt:geological features and tectonic model.Mineral Deposits,27(2):123-144(侯增谦,宋玉财,李政,王召林,杨志明,杨竹森,刘英超,田世洪,何龙清,陈开旭,王富春,赵呈祥,薛万文,鲁海峰.2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质,27(2):123-144)[DOI:10.16111/j.0258-7106.2008.02.001]
    Li Q Y,Cai X H and Song Y.2014.Research of the distribution of national scale surface roughness length with high resolution in China.Plateau Meteorology,33(2):474-482(李沁怡,蔡旭晖,宋宇.2014.中国高分辨率地表粗糙度分布研究.高原气象,33(2):474-482)[DOI:10.7522/j.issn.1000-0534.2012.00191]
    Liu D C,Zhao Y J,Ye F W,Tian F and Qiu J T.2017.Study on the metallogenic background of the Liuyuan-Fangshankou area by using airborne hyperspectral remote sensing.Journal of Remote Sensing,21(1):136-148(刘德长,赵英俊,叶发旺,田丰,邱骏挺.2017.航空高光谱遥感区域成矿背景研究-以甘肃柳园-方山口地区为例.遥感学报,21(1):136-148)[DOI:10.11834/jrs.20175186]
    Liu L,Yang X Z,Zhou F and Lang W H.2017.Non-local filtering for polarimetric SAR data based on three dimensional patch matching wavelet transform.Journal of Remote Sensing,21(2):218-227(刘留,杨学志,周芳,郎文辉.2017.3维块匹配小波变换的极化SAR非局部均值滤波.遥感学报,21(2):218-227)[DOI:10.11834/jrs.20176257]
    Pour B A and Hashim M.2014.Structural geology mapping using PALSAR data in the Bau gold mining district,Sarawak,Malaysia.Advances in Space Research,54(4):644-654[DOI:10.1016/j.asr.2014.02.012]
    Pour A B and Hashim M.2015a.Structural mapping using PALSARdata in the Central Gold Belt,Peninsular Malaysia.Ore Geology Reviews,64:13-22[DOI:10.1016/j.oregeorev.2014.06.011]
    Pour A B and Hashim M.2015b.Integrating PALSAR and ASTERdata for mineral deposits exploration in tropical environments:a case study from Central Belt,Peninsular Malaysia.International Journal of Image and Data Fusion,6(2):170-188[DOI:10.1080/19479832.2014.985619]
    Pour A B,Hashim M,Makoundi C and Zaw K.2016.Structural mapping of the Bentong-Raub Suture Zone using PALSAR remote sensing data,Peninsular Malaysia:implications for sediment-hosted/orogenic gold mineral systems exploration.Resource Geology,66(4):368-385[DOI:10.1111/rge.12105]
    Pour B A,Hashim M and Marghany M.2014.Exploration of gold mineralization in a tropical region using Earth observing-1(EO1)and JERS-1 SAR data:a case study from Bau gold field,Sarawak,Malaysia.Arabian Journal of Geosciences,7(6):2393-2406[DOI:10.1007/S12517-013-0969-3]
    Pour A B,Hashim M and Park Y.2018.Gondwana-derived terranes structural mapping using PALSAR remote sensing data.Journal of the Indian Society of Remote Sensing,46(2):249-262[DOI:10.1007/s12524-017-0673-y]
    Pradipta R A,Saepuloh A and Suryantini.2016.Geology structure identification based on Polarimetric SAR(PolSAR)data and field based observation at Ciwidey geothermal field.IOP Conference Series:Earth and Environmental Science,42(1):012008[DOI:10.1088/1755-1315/42/1/012008]
    Saepuloh A,Koike K and Omura M.2012.Applying Bayesian decision classification to Pi-SAR polarimetric data for detailed extraction of the geomorphologic and structural features of an active volcano.IEEE Geoscience and Remote Sensing Letters,99(4):554-558[DOI:10.1109/LGRS.2011.2174611]
    Spatz D M.1997.Remote sensing characteristics of the sediment-and volcanic-hosted precious metal systems:imagery selection for exploration and development.International Journal of Remote Sensing,18(7):1413-1438[DOI:10.1080/014311697218205]
    Wadhams P,Parmiggiani F F,de Carolis G,Desiderio D and Doble MJ.2004.SAR imaging of wave dispersion in Antarctic pancake ice and its use in measuring ice thickness.Geophysical Research Letters,31(15):L15305[DOI:10.1029/2004GL020340]
    Wang G H,Han F L,Yang Y J,Li Y Q and Cui J L.2009.Discovery and geologic significance of Late Paleozoic accretionary complexes in central Qiangtang,northern Tibet,China.Geological Bulletin of China,28(9):1181-1187(王根厚,韩芳林,杨运军,李元庆,崔江利.2009.藏北羌塘中部晚古生代增生杂岩的发现及其地质意义.地质通报,28(9):1181-1187)[DOI:10.3969/j.issn.1671-2552.2009.09.003]
    Woodhouse I H.2006.Introduction to Microwave Remote Sensing.Boca Raton:CRC Press
    Xiang J,Chen J P,Hu B,Hu Q and Yang W.2016.3D metallogenic prediction based on 3D geological-geophysical model:a case study in Tongling mineral district of Anhui.Advances in Earth Science,31(6):603-614(向杰,陈建平,胡彬,胡桥,杨伟.2016.基于三维地质-地球物理模型的三维成矿预测-以安徽铜陵矿集区为例.地球科学进展,31(6):603-614)[DOI:10.11867/j.issn.1001-8166.2016.06.0603]
    Xing X M,He Y G,Wu F,Wen D B,Zhu J J and Xu P.2016.Time series of subsidence inversion on mining area using PSInSAR.Journal of Remote Sensing,20(3):491-501(邢学敏,贺跃光,吴凡,闻德保,朱建军,徐鹏.2016.永久散射体雷达差分干涉反演矿区时序沉降场.遥感学报,20(3):491-501)[DOI:10.11834/jrs.20165104]
    Xu Z Q,Yang J S,Li W C,Zeng L S and Xu C P.2012.Tectonic background of important metallogenic belts in the southern and southeastern Tibetan Plateau and ore prospecting.Acta Geologica Sinica,86(12):1857-1868(许志琴,杨经绥,李文昌,曾令森,许翠萍.2012.青藏高原南部与东南部重要成矿带的大地构造定格与找矿前景.地质学报,86(12):1857-1868)[DOI:10.3969/j.issn.0001-5717.2012.12.001]
    Zhang Q J.2017.System design and key technologies of the GF-3satellite.Acta Geodaetica et Cartographica Sinica,46(3):269-277(张庆君.2017.高分三号卫星总体设计与关键技术.测绘学报,46(3):269-277)[DOI:10.11947/j.AGCS.2017.20170049]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700