用户名: 密码: 验证码:
非接触机械密封端面间流体膜流动状态临界雷诺数的讨论
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discussion on Critical Reynolds Number of Fluid Film Flow State Between the Non-contact Mechanical Seal Faces
  • 作者:付朝波 ; 宋鹏云
  • 英文作者:FU Chaobo;SONG Pengyun;Faculty of Chemical Engineering,Kunming University of Science and Technology;
  • 关键词:机械密封 ; 流体膜 ; 压差流 ; 剪切流 ; 临界雷诺数
  • 英文关键词:mechanical seal;;fluid film;;pressure flow;;shear flow;;critical Reynolds number
  • 中文刊名:RHMF
  • 英文刊名:Lubrication Engineering
  • 机构:昆明理工大学化学工程学院;
  • 出版日期:2019-07-15
  • 出版单位:润滑与密封
  • 年:2019
  • 期:v.44;No.335
  • 基金:国家自然科学基金项目(51465026)
  • 语种:中文;
  • 页:RHMF201907014
  • 页数:7
  • CN:07
  • ISSN:44-1260/TH
  • 分类号:69-74+83
摘要
非接触式机械密封端面间流体流动是一种包含压差流和剪切流在内的复合流动,其流动状态受内外压差、密封间隙、转速等多种因素的影响。梳理压差流、剪切流、复合流的临界雷诺数相关文献,发现大多数文献认为压差流的临界雷诺数为2 000,剪切流的临界雷诺数也接近2 000。提出一种利用复合速度计算压差剪切复合流动雷诺数的方法,即将压差流与剪切流形成的速度的矢量和作为雷诺数的特征速度来计算雷诺数,简称复合速度雷诺数,并以复合速度雷诺数等于2 000作临界雷诺数判据,来判断流体膜的压差剪切复合流动是处于层流状态还是处于湍流状态。对于压差流和剪切流相互垂直的复合流动,用复合速度法确定的复合速度雷诺数与分别用压差流雷诺数和剪切流雷诺数复合的复合雷诺数等价。以GABRIEL经典论文数据为例,利用复合速度方法得到的最大复合雷诺数为100,小于复合流动临界雷诺数,处于层流状态。
        The fluid flow between non-contact mechanical seal faces is a composite flow consisting of pressure flow and shear flow.The flow state is influenced by various factors such as internal and external pressure difference,seal clearance,and rotation speed,etc.Combing related literature about the critical Reynolds number of the pressure flow,the shear flow,and the composite flow,it is found that most literature believe that the critical Reynolds number of the pressure flow is 2 000,and the critical Reynolds number of the shear flow is also close to 2 000.A method for calculating the Reynolds number of the combination of Poiseuille flow and Couette flow by using the composite velocity was presented,that is,taking the composite velocity as the characteristic velocity to calculate the Reynolds number,and called it as composite speed Reynolds number.The composite speed Reynolds number that is equal to 2 000 is used as a criterion of critical Reynolds number to judge whether the combined flow of the fluid film is in a laminar flow or in turbulent flow.For composite flows in which the pressure flow and the shear flow is perpendicular to each other,the composite speed Reynolds number determined by the composite velocity method is equivalent to the compound Reynolds number compounded by the pressure flow Reynolds number and the shear flow Reynolds number respectively.Taking Gabriel's classic paper data as an example,the maximum composite Reynolds number calculated by the composite velocity method is 100,which is less than the critical Reynolds number of composite flow and is in a laminar state.
引文
[1]郝木明,胡丹梅,杨惠霞.上游泵送机械密封的研究开发及应用[J].流体机械,2001,29(2):13-16.HAO M M,HU D M,YANG H X.Development and application of upstream pumping mechanical face seals[J].Fluid Machinery,2001,29(2):13-16.
    [2]王明武.高温泵新型波纹管串联式机械密封的应用[J].润滑与密封,2010,35(3):121-123.WANG M W.Application of new-type metal bellow tandem mechanical seals on high temperature pumps[J].Lubrication Engineering,2010,35(3):121-123.
    [3]王新军,刘从海.新型气膜非接触性机械密封在丙烷、戊烷泵上的应用[J].通用机械,2013(3):36-38.
    [4]张新敏,夏延秋,赵清,等.离心泵稳态密封间隙力的计算分析[J].润滑与密封,2004,29(4):63-65.ZHANG X M,XIA Y Q,ZHAO Q,et al.Analysis of static hydraulic forces in annular seals[J].Lubrication Engineering,2004,29(4):63-65.
    [5]刘忠,刘莹,刘向锋.新型双列螺旋槽端面密封的静态性能分析[J].润滑与密封,2005,30(1):63-65.LIU Z,LIU Y,LIU X F.Static performance analysis of a new double spiral groove face seal[J].Lubrication Engineering,2005,30(1):63-65.
    [6]DARBYSHIRE A G,MULLIN T.Transition to turbulence in constant-mass-flux pipe flow[J].Journal of Fluid Mechanics,1995,289(1):83-114.
    [7]MAYNE S D,WEBB A R.Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry[J].Experiments in Fluids,2002,32(1):3-15.
    [8]SHARP K V,ADRIAN R J.Transition from laminar to turbulent flow in liquid filled microtubes[J].Experiments in Fluids,2004,36(5):741-747.
    [9]LI Z X,DU D X,GUO Z Y.Experimental study on flow characteristics of liquid in circular microtubes[J].Microscale Thermophysical Engineering,2003,7(3):253-265.
    [10]WU H Y,CHEN G P.Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios[J].International Journal of Heat&Mass Transfer,2003,46(14):2519-2525.
    [11]HETSRONI G,MOSYAK A,POGREBNYAK E,et al.Fluid flow in micro-channels[J].International Journal of Heat&Mass Transfer,2005,48(10):1982-1998.
    [12]薛琳,苏红,毛军,等.滤除泰勒涡的同心环隙科特流临界雷诺数的实验确定[J].北京交通大学学报,2000,24(1):56-58.XUE L,SU H,MAO J,et al.The experimental determination of the critical Reynolds number of the couette flow between two concentric cylinders in which the Taylor vortices are filtrated[J].Journal of Beijing Jiaotong University,2000,24(1):56-58.
    [13]YANG C Y,WU J C,CHIEN H T,et al.Friction characteristics of water,R-134a,and air in small tubes[J].Microscale Thermophysical Engineering,2003,7(4):335-348.
    [14]黄迦乐,金滔,汤珂.微石英管与多孔光纤内流动特性实验研究[J].工程热物理学报,2013,34(7):1213-1216.HUANG J L,JIN T,TANG K.Experimental study on gas flow in quartz microtubes and holey optical fibers[J].Journal of Engineering Thermophysics,2013,34(7):1213-1216.
    [15]孙月秋,仪登利,闫郡庭.窄环形通道流体特性的实验研究[J].辽宁工业大学学报(自然科学版),2011,31(6):380-382.SUN Y Q,YI D L,YAN J T.Experimental study on fluid characteristics in narrow annuli[J].Journal of Liaoning University of Technology(Natural Science Edition),2011,31(6):380-382.
    [16]TAYLOR C M,DOWSON D.Turbulent lubrication theory:application to design[J].Journal of Tribology,1974,96(1):36-46.
    [17]TILLMARK N,ALFREDSSON P H.Experiments on transition in plane couette flow[J].Journal of Fluid Mechanics,1992,235(1):89-102.
    [18]DOU H S,KHOO B C.Investigation of turbulent transition in plane couette flows using energy gradient method[J].Advances in Applied Mathematics&Mechanics,2011,3(2):165-180.
    [19]CONSTANTINESCU V N.On gas lubrication in turbulent regime[J].Journal of Basic Engineering,1964,86(3):475-482.
    [20]荣深涛,杨健,徐岩.同心环隙有压科特流层流解析解及实验验证[J].北京交通大学学报,1990,14(4):8-15.RONG S T,YANG J,XU Y.The laminar couette flow between two concentric cylinders with adverse pressure gradient[J].Journal of Beijing Jiaotong University,1990,14(4):8-15.
    [21]李邦达,刘永建.偏心环空中幂律流体层流螺旋流流动的稳定性[J].东北石油大学学报,1992,15(3):11-17.LI B D,LIU Y J.The stability of laminar helical flow of powerlaw fluid in eccentric annulus[J].Journal of Northeast Petroleum University,1992,15(3):11-17.
    [22]BRUNETIERE N,TOURNERIE B,FRENE J.Influence of fluid flow regime on performances of non-contacting liquid face seals[J].Journal of Tribology,2002,124(3):515-523.
    [23]王乐勤,周文杰,邢桂坤,等.小锥度环形密封转子动特性[J].排灌机械工程学报,2013,31(6):517-522.WANG L Q,ZHOU W J,XING G K,et al.Dynamic coefficients of small cone-shaped annular seal rotor[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(6):517-522.
    [24]丁雪兴,富影杰,张静,等.基于CFD的螺旋槽干气密封端面流场流态分析[J].排灌机械工程学报,2010,28(4):330-334.DING X X,FU Y J,ZHANG J,et al.Fluid state analysis on flow field of gas seal with spiral groove based on CFD[J].Journal of Drainage and Irrigation Machinery Engineering,2010,28(4):330-334.
    [25]刘维滨.气液混膜润滑泵出型螺旋槽机械密封性能数值分析[D].东营:中国石油大学(华东),2013.
    [26]郝木明,蔡厚振,刘维滨.泵出型螺旋槽机械密封端面间隙气液两相流动数值分析[J].中国石油大学学报(自然科学版),2015,39(6):129-137.HAO M M,CAI H Z,LIU W B,et al.Numerical analysis on gas-liquid two-phase flow of outward pumping spiral-grooved mechanical seal clearance[J].Journal of China University of Petroleum(Edition of Natural Science),2015,39(6):129-137.
    [27]GABRIELR P.Fundamentals of spiral groove non-contacting face seals[J].Lubrication Engineering,1994,50:215-224.
    [28]宋鹏云.螺旋槽干气密封端面气膜压力计算方法讨论[J].润滑与密封,2009,34(7):7-9.SONG P Y.Discussion about the calculation methods of the gas film pressure of the spiral groove dry gas seals[J].Lubrication Engineering,2009,34(7):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700