用户名: 密码: 验证码:
稀土硅酸盐陶瓷材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Rare Earth Silicate Ceramics
  • 作者:田志林 ; 王京阳
  • 英文作者:TIAN Zhi-Lin;WANG Jing-Yang;High-Performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;
  • 关键词:稀土硅酸盐 ; 环/热障涂层 ; 力学性能 ; 热学性能 ; 抗腐蚀性能
  • 英文关键词:Rare earth silicate;;Environmental/thermal barrier coating;;Mechanical property;;Thermal property;;Corrosion resistance
  • 中文刊名:XDTC
  • 英文刊名:Advanced Ceramics
  • 机构:中国科学院金属研究所沈阳材料科学国家(联合)实验室高性能陶瓷材料研究部;
  • 出版日期:2018-10-15
  • 出版单位:现代技术陶瓷
  • 年:2018
  • 期:v.39;No.169
  • 语种:中文;
  • 页:XDTC201805001
  • 页数:26
  • CN:05
  • ISSN:37-1226/TQ
  • 分类号:3-28
摘要
稀土硅酸盐陶瓷具有良好的抗水蒸气腐蚀性能和较低的热膨胀系数,被认为是下一代硅基陶瓷环障涂层候选材料。研究发现,部分稀土硅酸盐陶瓷具有较低的热导率,使得它们兼具隔热和抗腐蚀的性能,有望成为硅基陶瓷环/热障一体化涂层材料。本文评述了稀土硅酸盐陶瓷的种类、本征热学性能、力学性能以及抗低熔点氧化物熔盐和水蒸气腐蚀的研究进展,并对其未来发展方向进行了展望。
        Rare earth silicates are the third generation of environmental barrier coating materials for Si-based ceramics due to their good corrosion resistance to water vapor and low thermal expansion coefficients. Recently, some investigations revealed the low thermal conductivity of some rare earth silicates and make them with good thermal and corrosion resistance properties. It highlights the rare earth silicates as an integrated environmental/thermal barrier coating for Si-based ceramics. Therefore, this work summarizes the intrinsic thermal and mechanical properties, CMAS and water vapor corrosion resistance of rare earth silicates. It can provide guidelines on the selection and optimization of rare earth silicates as integrated environmental/thermal barrier coating materials.
引文
[1]BOSE S,DEMASI-MARCIN J.Thermal barrier coating experience in gas turbine engines at Pratt&Whitney[J].Journal of Thermal Spray Technology,1997,6(1):99-104.
    [2]ZHUO Y,ZHAO H,WADLEY HNG.The vapor deposition and oxidation of platinumand yttria-stabilized zirconiamultilayers[J].Journal of the American Ceramic Society,2011,94:2671-2679.
    [3]CLARKE DR,OECHSNER M,PADTURE NP.Thermal-barrier coatings for more efficient gas-turbine engines[J].MRS Bulletin,2012,37:891-902.
    [4]PADTURE NP,GELL M,JORDAN EH.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296:280-284.
    [5]OHNABE H,MASAKI S,ONOZUKA M,et al.Potential application of ceramic matrix composites to aero-engine components[J].Composites A,1999,30:489-496.
    [6]HAMPSHIRE S.Silicon nitride ceramics-review of structure,processing and properties[J].Journal of Achievements in Materials and Manufacturing Engineering,2007,24:43-50.
    [7]SPRIET P.CMC applications to gas turbines[M]//BANSAL NP,LAMON J.Ceramic Matrix Composites:Materials,Modeling and Technology.New York:John Wiley&Sons,Ins.,2014:591-608
    [8]LEE KN.Current status of environmental barrier coatings for Si-based ceramics[J].Surface and Coatings Technology,2000,133:1-7.
    [9]LIU J,ZHANG L,LIU Q,et al.Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1400°C[J].Journal of the European Ceramic Society,2013,33:3419-3428.
    [10]LEE KN,FOX DS,BANSAL NP.Rare earth silicate environmental barrier coatings for Si C/Si Ccomposites and Si3N4 ceramics[J].Journal of the European Ceramic Society,2005,25:1705-1715.
    [11]XU J,SARIN VK,DIXIT S,et al.Stability of interfaces in hybrid EBC/TBC coatings for Si-based ceramics in corrosive environments[J].International Journal of Refractory Metals&Hard Materials,2015,49:339-349.
    [12]MUKTINUTALAPATI NR.Materials for gas turbines-an overview[M].London:IntechOpen,2011.
    [13]BONDAR IA.Rare-earth silicates[J].Ceramics International,1982,8:83-89.
    [14]MACLAREN I,RICHTER G.Structure and possible origins of stacking faults in gamma-yttrium disilicate[J].Philosophical Magazine,2009,89:169-181.
    [15]FELSCHE J.The crystal chemistry of the rare-earth silicates[M].Berlin:Springer,1973.
    [16]TIAN Z,ZHENG L,WANG J,et al.Theoretical and experimental determination of the major thermo-mechanical properties of RE2Si O5(RE=Tb,Dy,Ho,Er,Tm,Yb,Lu,and Y)for environmental and thermal barrier coating applications[J].Journal of the European Ceramic Society,2016,36:189-202.
    [17]WU R,PAN W,REN X,et al.An extremely low thermal conduction ceramic:RE9.33(Si O4)6O2 silicate oxyapatite[J].Acta Materialia,2012,60:5536-5544.
    [18]TIAN Z,SUN L,WANG J,et al.Theoretical prediction and experimental determination of the low lattice thermal conductivity of Lu2Si O5[J].Journal of the European Ceramic Society,2015,35:1923-1932.
    [19]KARDASHEV BK,NEFAGIN AS,ERMOLAEV GN,et al.Internal friction and brittle-ductile transition in structural materials[J].Technical Physics Letters,2006,32:799-801.
    [20]SCHALLER R.Mechanical spectroscopy of the high-temperature brittle-to-ductile transition in ceramics and cermets[J].Journal of Alloys and Compounds,2000,310:7-15.
    [21]田志林.几种稀土硅酸盐陶瓷的预测、制备和性能研究[D].北京:中国科学院大学博士学位论文,2016.
    [22]FERNANDEZ-CARRION AJ,ALLIX M,BECERRO AI.Thermal expansion of rare-earth pyrosilicates[J].Journal of the American Ceramic Society,2013,96:2298-2305.
    [23]ZHOU Y,ZHAO C,WANG F,et al.Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulkβ-Yb2Si2O7[J].Journal of the American Ceramic Society,2013,96:3891-3900.
    [24]MUSIC D,SCHNEIDER JM.Elastic properties of MFe3N(M=Ni,Pd,Pt)studied by ab initio calculations[J].Applied Physics Letters,2006,88:No.031914.
    [25]LAWN B.Fracture of Brittle Solids[M].The Second Edition.London:Cambridge University Press,1993.
    [26]BAO Y,HU C,ZHOU Y.Damage tolerance of nanolayer grained ceramics and quantitative estimation[J].Materials Science and Technology,2006,22:227-230.
    [27]COOK RF,LAWN BR,FAIRBANKS CJ.Microstructure-strength properties in ceramics:I,effect of crack size on toughness[J].Journal of the American Ceramic Society,1985,68:604-615.
    [28]TIAN Z,ZHENG L,WANG J,et al.Damage tolerance and extensive plastic deformation ofβ-Yb2Si2O7from room to high temperatures[J].Journal of the American Ceramic Society,2015,98:2843-2851.
    [29]HAY RS.Twin-dislocation interaction in monazite(monoclinic LaPO4)[J].Philosophical Magazine,2005,85:373-386.
    [30]LLOYD SJ,MOLINA-ALDAREGUIA JM,CLEGG WJ.Deformation under nanoindents in Si,Ge,and GaAs examined through transmission electron microscopy[J].Journal of Materials Research,2011,16:3347-3350.
    [31]TIAN Z,ZHENG L,WANG J.Synthesis,mechanical and thermal properties of a damage tolerant ceramic:β-Lu2Si2O7[J].Journal of the European Ceramic Society,2015,35:3641-3650.
    [32]WANG X,ZHOU Y.Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic[J].Journal of Materials Chemistry,2002,12:455-460.
    [33]WINTER MR,CLARKE DR.Oxide materials with low thermal conductivity[J].Journal of the American Ceramic Society,2007,90:533-540.
    [34]SLACK GA.Nonmetallic crystals with high thermal conductivity[J].Journal of Physics and Chemistry of Solids,1973,34:321-335.
    [35]CLARKE DR.Materials selection guidelines for low thermal conductivity thermal barrier coatings[J].Surface and Coatings Technology,2003,163:67-74.
    [36]LIU B,WANG J,LI F,et al.Theoretical elastic stiffness,structural stability and thermal conductivity of La2T2O7(T=Ge,Ti,Sn,Zr,Hf)pyrochlore[J].Acta Materialia,2010,58:4369-4377.
    [37]CAHILL DG,WATSON SK,POHL RO.Lower limit to the thermal conductivity of disordered crystals[J].Physical Review B,1992,46:6131-6140.
    [38]FENG J,XIAO B,ZHOU R,et al.Anisotropy in elasticity and thermal conductivity of monazite-type REPO4(RE=La,Ce,Nd,Sm,Eu and Gd)from first-principles calculations[J].Acta Materialia,2013,61:7364-7383.
    [39]SANDITOV DS,MASHANOV AA,SANDITOV BD,et al.Anharmonism of lattice vibrations and of acoustic wave propagation velocity in quasi-isotropic solids[J].Technical Physics,2011,56:632-636.
    [40]PEI Y,HE J,LI J,et al.High thermoelectric performance of oxyselenides:intrinsically low thermal conductivity of Ca-doped BiCuSeO[J].NPG Asia Materials,2013,5:No.e47.
    [41]KINGERY WD.Factors affecting thermal stress resistance of ceramic materials[J].Journal of the American Ceramic Society,1955,38:3-15.
    [42]TIAN Z,ZHENG L,LI Z,et al.Exploration of the low thermal conductivities ofγ-Y2Si2O7,β-Y2Si2O7,β-Yb2Si2O7,andβ-Lu2Si2O7 as novel environmental barrier coating candidates[J].Journal of the European Ceramic Society,2016,36:2813-2823.
    [43]POERSCHKE DL,JACKSON RW,LEVI CG.Silicate deposit degradation of engineered coatings in gas turbines:progress toward models and materials solutions[J].Annual Review of Materials Research,2017,47:297-330.
    [44]GRANT KM,KRAMER S,SEWARD GGE,et al.Calcium-magnesium alumino-silicate interaction with yttrium monosilicate environmental barrier coatings[J].Journal of the American Ceramic Society,2010,93:3504-3511.
    [45]ZHAO H,RICHARDS BT,LEVI CG,et al.Molten silicate reactions with plasma sprayed ytterbium silicate coatings[J].Surface and Coatings Technology,2016,288:151-162.
    [46]POERSCHKE DL,SHAW JH,VERMAN,et al.Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts[J].Acta Materialia,2018,145:451-461.
    [47]HAGEN K.Silicon nitride for high-temperature applications[J].Journal of the American Ceramic Society,2010,93:1501-1522.
    [48]UENO S,JAYASEELAN DD,OHJI T.Water vapor corrosion behavior of lutetium silicates at high temperature[J].Ceramics International,2006,32:451-455.
    [49]NASIRI NA,PATRA N,JAYASEELAN DD,et al.Water vapour corrosion of rare earth monosilicates for environmental barrier coating application[J].Ceramics International,2017,43:7393-7400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700