用户名: 密码: 验证码:
胡萝卜微波干燥特性及动力学模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microwave Drying Characteristics and Kinetic Model of Carrot
  • 作者:刘旺星 ; 陈雄飞 ; 余佳佳 ; 刘木华 ; 胡淑芬 ; 卢帆
  • 英文作者:LIU Wang-xing;CHEN Xiong-fei;YU Jia-jia;LIU Mu-hua;HU Shu-fen;LU Fan;College of Engineering,Jiangxi Agricultural University;Jiangxi Key Laboratory of Modern Agricultural Equipment;
  • 关键词:胡萝卜 ; 微波 ; 干燥特性 ; 动力学模型 ; Page模型
  • 英文关键词:carrot;;microwave;;drying characteristics;;dynamic model;;Page model
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:江西农业大学工学院;江西省现代农业装备重点实验室;
  • 出版日期:2018-12-25 18:42
  • 出版单位:食品工业科技
  • 年:2019
  • 期:v.40;No.425
  • 基金:江西省科技计划项目(20171BBF60017)
  • 语种:中文;
  • 页:SPKJ201909013
  • 页数:6
  • CN:09
  • ISSN:11-1759/TS
  • 分类号:74-78+83
摘要
为研究胡萝卜微波干燥特性,开展不同微波功率(406、567、700 W)、切片厚度(2、4、6 mm)和载料量(30、40、90 g)的干燥试验研究,探讨了其失水速率、干基含水率的干燥特性曲线和有效水分扩散系数D_(eff)的影响规律,构建了胡萝卜薄层干燥动力学模型。结果表明:胡萝卜微波干燥分为预加热干燥阶段和降速干燥阶段;微波功率700 W、切片厚度6 mm和载料量30 g时,干燥效果最佳;通过回归拟合分析,Page动力学模型最适于描述胡萝卜微波干燥过程,模型决定系数R~2均大于0.98,验证试验最大误差为6.91%。
        In order to study the microwave drying characteristics of carrots,the drying test of different microwave power (406,567,700 W),slice thickness (2,4,6 mm) and loading amount (30,40,90 g) was carried out,and the water loss rate was discussed. The drying characteristic curve of dry water content and the effect of effective water diffusion coefficient D_(eff) were studied to construct a thin layer drying dynamics model of carrot. The results showed that the microwave drying of carrots was divided into preheating drying stage and slowing drying stage,and the constant-speed drying process time was short;With the conditions of microwave power 700 W,slice thickness 6 mm and loading amount 30 g,the drying effect was the best. By regression fitting analysis,the Page dynamics model was most suitable for describing the microwave drying process of carrots. The model determination coefficient R~2 was greater than 0.98,and the maximum error of the verification test was 6.91%.
引文
[1]王永周,陈美,邓维用.我国微波干燥技术应用研究进展[J].干燥技术与设备,2008(5):219-224.
    [2]Qiushan Guo,Da-Wen Sun,Jun-Hu Cheng,et al.Microwave processing techniques and their recent applications in the food industry[J].Trends in Food Science & Technology,2017:67.
    [3]王也,吕为乔,李树君,等.农产品微波干燥技术与装备的研究进展[J].包装与食品机械,2016,34(3):56-61.
    [4]蒋玉萍,王俊.番薯片微波干燥特性及干燥模型[J].浙江农业学报,2009,21(4):407-410.
    [5]熊永森,王俊,王金双,等.微波干燥胡萝卜片工艺试验研究[J].农业工程学报,2008(6):291-294.
    [6]种翠娟,朱文学,刘云宏,等.胡萝卜薄层干燥动力学模型研究[J].食品科学,2014,35(9):24-29.
    [7]Flora-Glad Chizoba Ekezie,Da-Wen Sun,Zhang Han,et al.Microwave-assisted food processing technologies for enhancing product quality and process efficiency:A review of recent developments[J].Trends in Food Science & Technology,2017:67.
    [8]王相友,张海鹏,张丽丽,等.胡萝卜切片红外干燥特性与数学模型[J].农业机械学报,2013,44(10):198-202.
    [9]李招娣,赵海霞,邓红,等.胡萝卜片的微波干燥工艺条件优化[J].食品工程,2007(4):34-38.
    [10]江宁,李丽娟,李大婧,等.莲藕片热风干燥特性及动力学模型[J].江苏农业科学,2015,43(1):247-250.
    [11]Yuting Tian,Jing Liang,Hongliang Zeng,et al.Microwave drying characteristics and kinetics of lotus(Nelumbo nucifera Gaertn.)seeds[J].International Journal of Food Engineering,2013,9(1):91-98.
    [12]毛志幸,孙辉,陈宗道.白果微波干燥特性及干燥动力学模型研究[J].食品工业科技,2017,38(22):11-16,21.
    [13]刘艳,段振华,唐小闲,等.大果山楂片热风干燥特性及其动力学模型[J].食品工业,2017,38(3):82-87.
    [14]张凡.姜片的微波与热风联合干燥工艺及动力学研究[D].长春:吉林大学,2015.
    [15]郑超,王月秋.食品中水分的测定方法[J].黑龙江科技信息,2016(22):8.
    [16]田华,韩艳婷.苦瓜微波干燥特性及动力学模型[J].食品研究与开发,2017,38(23):125-129.
    [17]杨俊红,焦士龙,郭锦棠,等.菜豆种子薄层干燥物料内部水分扩散系数的确定[J].工程热物理学报,2001(2):211-214.
    [18]刘榴,路倩倩,刘相东.生物材料有效水分扩散系数的模型与测定[J].干燥技术与设备,2010,8(5):217-223.
    [19]潘永康,王喜忠,刘相东.现代干燥技术2版[M].北京:化学工业出版社,2006:12.
    [20]王宝和.干燥动力学研究综述[J].干燥技术与设备,2009,7(2):51-56.
    [21]马壮,邸文静,王帅,等.基于Origin 7.0软件非线性拟合白浆土胡敏酸吸附Zn2+的热力学过程[J].中国农学通报,2014,30(32):159-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700