用户名: 密码: 验证码:
大亚湾鱼类生物量粒径谱特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biomass particle-size spectrum of fish in Daya Bay
  • 作者:徐姗楠 ; 郭建忠 ; 陈作志 ; 许友伟 ; 周林滨 ; 柯志新 ; 李纯厚
  • 英文作者:XU Shannan;GUO Jianzhong;CHEN Zuozhi;XU Youwei;ZHOU Linbin;KE Zhixin;LI Chunhou;South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University;Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences;
  • 关键词:鱼类 ; 生物量粒径谱 ; ABC曲线 ; 大亚湾
  • 英文关键词:fish;;biomass particle-size spectrum;;ABC curve;;Daya Bay
  • 中文刊名:ZSCK
  • 英文刊名:Journal of Fishery Sciences of China
  • 机构:中国水产科学研究院南海水产研究所,农业农村部南海渔业资源开发利用重点实验室,广东省渔业生态环境重点实验室;上海海洋大学,水产科学国家级实验教学示范中心;中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室;
  • 出版日期:2018-07-12 10:06
  • 出版单位:中国水产科学
  • 年:2019
  • 期:v.26
  • 基金:公益性行业(农业)科研专项(201403008);; 国家重点基础研究发展计划项目(2015CB452904);; 广东省自然科学基金项目(2015A030313785);; 国家自然科学基金项目(31100362)
  • 语种:中文;
  • 页:ZSCK201901004
  • 页数:10
  • CN:01
  • ISSN:11-3446/S
  • 分类号:36-45
摘要
为了解大亚湾海域鱼类群落粒径结构特征,根据2016年底拖网调查数据构建了春、秋季大亚湾鱼类粒径谱,比较分析了两个季节鱼类生物量粒径谱特征参数异质性。结果表明,大亚湾鱼类的Sheldon型生物量粒径谱为单峰模式,鱼类粒径范围为-2~10粒径级,最高峰值均位于3~4粒径级。鱼类标准化生物量粒径谱曲线陡峭及曲率降低主要是少量粒径大的常年定居性鱼种龙头鱼(Harpodon nehereus)、二长棘犁齿鲷(Evynnis cardinalis)和季节洄游性鱼类鳗鲇(Plotosus lineatus)、金钱鱼(Scatophagus argus)出现以及粒径范围减小造成的。从沿岸、中部和湾口等3个区域来看,春季,沿岸海域曲率最大,湾中部海域次之,湾口海域最小;秋季,湾口海域曲率最大,沿岸海域次之,湾中部海域最小。沿岸海域曲率降低主要是有大量粒径小的当年生短吻鲾(Leiognathus brevirostris)幼鱼出现造成;中部海域曲率降低主要是有少数粒径较大的杂食豆齿鳗(Pisoodonophisboro)和常年定居种龙头鱼的出现造成;湾口海域曲率升高主要是有少数粒径大的龙头鱼的出现造成。可见,洄游性鱼类、当年生幼鱼和常年定居性鱼类等补充群体数量及粒径范围大小对鱼类粒径谱的峰型和曲率具有明显的影响。ABC曲线表明,春、秋季大亚湾海域鱼类群落均处于严重干扰状态。
        In order to understand the grain-size structure characteristics of fish communities in Daya Bay, we constructed the biomass particle-size spectrum of fish in Daya Bay based on the data from two bottom trawl surveys in 2016. The heterogeneity of the characteristic parameters of the fish biomass particle-size spectrum from different parts of the bay in two seasons was compared and analyzed. The results showed that the pattern of the Sheldon-type biomass particle-size spectrum of fish in Daya Bay was unimodal; the fish particle size ranged from –2 to 10 and the highest peak was at a grain size of 3–4. The reduction in the curvature of the biomass particle-size spectrum of fish was mainly caused by the reduced size range from the emergence of a small number of large perennial settlers, Harpodon nehereus and Evynnis cardinalis, and seasonal migratory fish, Plotosus lineatus and Scatophagus argus. From the three areas of the bay(coastal, central, and bayou), the curvatures in the spring were the largest in the coastal area, followed by the central area, and they were the smallest in the bayou. The curvatures in autumn were the largest in the bayou, followed by the coastal area, and they were the smallest in the central area of the bay. The decrease in the curvature of the coastal area was mainly caused by the presence of a large number of small particle Leiognathus brevirostris juveniles. The decrease in the curvature of the central area was due to the emergence of a small number of large Pisodonophis boro and Harpadon nehereus, which reduced the size range. The increase in the curvature in the bayou was mainly caused by the emergence of a small number of large Harpadon nehereus. It can be seen that the number of supplemental groups such perennial settler fish, migratory fish, and perennial juveniles, and the size ranges have a significant impact on the peak shape and curvature of the fish biomass particle-size spectrum. The ABC curve showed that the biomass particle-size spectrum of fish in spring and autumn were in a seriously disturbed state.
引文
[1]Guo J Z,Chen Z Z,Xu S N.Advances in fish particle size spectra study[J].Marine Fisheries,2017(5):582-591.[郭建忠,陈作志,徐姗楠.鱼类粒径谱研究进展[J].海洋渔业,2017(5):582-591.]
    [2]Sheldon R W,Parsons T R.A continuous size spectrum for particulate matter in the sea[J].Journal of the Fisheries Research Board of Canada,2011,24(5):909-915.
    [3]Zhou L B,Tan Y H,Huang L M,et al.The advances in the aquatic particle/biomass size spectra study[J].Acta Ecologica Sinica,2010,30(12):3319-3333.[周林滨,谭烨辉,黄良民,等.水生生物粒径谱/生物量谱研究进展[J].生态学报,2010,30(12):3319-3333.]
    [4]MSFD.Directive 2008/56/EC of the European Parliament and the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy(Marine Strategy Framework Directive)[J/OL].Official Journal of the European Union,2008,164:19-40[2018-04-10].https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=pi_com:C(2017)2842.
    [5]Greenstreet S P R,Rogers S I,Rice J C,et al.Development of the EcoQO for fish communities in the North Sea[J].ICES Journal of Marine Science,2011,68:1-11.
    [6]Macpherson E,Gordoa A,Garcia R A.Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean[J].Estuarine Coastal and Shelf Science,2002,55(5):777-788.
    [7]Emmrich M,Brucet S,Ritterbusch D,et al.Size spectra of lake fish assemblages:Responses along gradients of general environmental factors and intensity of lake-use[J].Freshwater Biology,2011,56(11):2316-2333.
    [8]Borgmann U.Particle-size-conversion efficiency and total animal production in pelagic ecosystems[J].Canadian Journal of Fisheries and Aquatic Sciences,1982,39(5):668-674.
    [9]Banse K,Mosher S.Adult body mass and annual production/biomass relationships of field populations[J].Ecological Monographs,1980,50(3):355-379.
    [10]Zwanenburg K C T.The effects of fishing on demersal fish communities of the Scotian Shelf[J].ICES Journal of Marine Science,2000,57(3):503-509.
    [11]Blanchard J L,Andersen K H,Scott F,et al.Evaluating targets and trade-offs among fisheries and conservation objectives using a multispecies size spectrum model[J].Journal of Applied Ecology,2014,51(3):612-622.
    [12]Graham N,Dulvy N K,Jennings S,et al.Size-spectra as indicators of the effects of fishing on coral reef fish assemblages[J].Coral Reefs,2005,24(1):118-124.
    [13]Xu G Z.Environments and Resources of Daya Bay[M].Hefei:Anhui Science&Technology Publishing House,1989:245-272.[徐恭昭.大亚湾环境与资源[M].合肥:安徽科学技术出版社,1989:245-272.]
    [14]Wang X H,Du F Y,Qiu Y S,et al.Variations of fish species diversity,faunal assemblage,and abundances in Daya Bay in1980-2007[J].Chinese Journal of Applied Ecology,2010,21(9):2403-2410.[王雪辉,杜飞雁,邱永松,等.1980-2007年大亚湾鱼类物种多样性、区系特征和数量变化[J].应用生态学报,2010,21(9):2403-2410.]
    [15]Chen P M,Yuan H R,Jia X P,et al.Changes in fishery resources of Yangmeikeng artificial reef area in Daya Bay[J].South China Fisheries Science,2013,9(5):100-108.[陈丕茂,袁华荣,贾晓平,等.大亚湾杨梅坑人工鱼礁区渔业资源变动初步研究[J].南方水产科学,2013,9(5):100-108.]
    [16]National Standardization Administration AQSIQ.Ocean Investigation Standards Part 6:Marine Biological Survey[S].Beijing,2007.[国家标准化委员会国家质检总局.海洋调查规范第6部分:海洋生物调查[S].北京,2007.]
    [17]Cheng Q T.Chinese Fish System Search[M].Beijing:Science Press,1987:248-513.[成庆泰.中国鱼类系统检索[M].北京:科学出版社,1987:248-513.]
    [18]Nelson J S.Fishes of the World[M].4th Edition.Hoboken:John Wiley&Sons,2006:334.
    [19]Li M D.Fish Taxonomy[M].Beijing:China Ocean Press,1998:28-47.[李明德.鱼类分类学[M].北京:海洋出版社,1998:28-47.]
    [20]Warwick R M.A new method for detecting pollution effects on marine macrobenthic communities[J].Marine Biology,1986,92(4):557-562.
    [21]Yemane D,Field J G,Leslie R W.Exploring the effects of fishing on fish assemblages using Abundance Biomass Comparison(ABC)curves[J].ICES Journal of Marine Science,2005,62(3):374-379.
    [22]Yan L,Tan Y G,Yang B Z,et al.Comparison on resources community of stow-net fishery before and after fishing off season in Huangmaohai Estuary[J].South China Fisheries Science,2016,12(6):1-8.[晏磊,谭永光,杨炳忠,等.基于张网渔业休渔前后的黄茅海河口渔业资源群落比较[J].南方水产科学,2016,12(6):1-8.]
    [23]Sheldon R W,Prakash A,Sutcliffe W H.The size distribution of particles in the ocean[J].Limnology&Oceanography,1972,17(3):327-340.
    [24]Jung S,Houde E D.Fish biomass size spectra in Chesapeake Bay[J].Estuaries and Coasts,2005,28(2):226-240.
    [25]Sprules W,Munawar M.Plankton size spectra in relation to ecosystem productivity,size,and perturbation[J].Canadian Journal of Fisheries and Aquatic Sciences,1986,43(9):1789-1794.
    [26]Sprules,W G,Stockwell,J D.Size-based biomass and production models in the St Lawrence Great Lakes[J].ICESJournal of Marine Science,1995,52(3-4):705-710.
    [27]Duplisea D E,Kerr S R.Application of a biomass size spectrum model to demersal fish data from the Scotian Shelf[J].Journal of Theoretical Biology,1995,177(3):263-269.
    [28]Kerr S R,Dickie L M.The Biomass Spectrum[M].New York:Columbia University Press,1893:110-128.
    [29]Macpherson E,Gordoa A.Biomass spectra in benthic fish assemblages in the Benguela System[J].Marine Ecology Progress Series,1996,138(1-3):27-32.
    [30]Trebilco R,Baum J K,Salomon A K,et al.Ecosystem ecology:Size-based constraints on the pyramids of life[J].Trends in Ecology&Evolution,2013,28(7):423-431.
    [31]Rochet M J,Beno?t E.Fishing destabilizes the biomass flow in the marine size spectrum[J].Proceedings:Biological Sciences,2012,279(1727):284-292.
    [32]Ray S,Bereca L,Strakrabaa M,et al.Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model[J].Ecological Modelling,2001,140(3):219-234.
    [33]Belgrano A,Brown J H.Oceans under the macroscope[J].Nature,2002,419(6903):128-129.
    [34]Li W K W.Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean[J].Nature,2002,419(6903):154-157.
    [35]Marquet P A,Qui?ones R A,Abades S,et al.Scaling and power-laws in ecological systems[J].Journal of Experimental Biology,2005,208(9):1749-1769.
    [36]Bainbridge R.The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat[J].Journal of Experimental Biology,1958,35(1):109-133.
    [37]Ware D M.Bioenergetics of pelagic fish:theoretical change in swimming speed and ration with body size[J].Journal of the Fisheries Research Board of Canada,1978,35(2):220-228.
    [38]Cohen J E,Pimm S L,Yodzis P,et al.Body sizes of animal predators and animal prey in food webs[J].Journal of Animal Ecology,1993,62(1):67-78.
    [39]Lundvall D,Svanb?ck R,Persson L,et al.Size-dependent predation in piscivores:Interactions between predator foraging and prey avoidance abilities[J].Canadian Journal of Fisheries and Aquatic Sciences,1999,56(7):1285-1292.
    [40]Scharf F S,Juanes F,Rountree R A.Predator size-prey size relationships of marine fish predators:interspecific variation and effects of ontogeny and body size on trophic-niche breadth[J].Marine Ecology Progress,2000,208(1):229-248.
    [41]Woodward G,Bo E,Emmerson M,et al.Body size in ecological networks[J].Trends in Ecology&Evolution,2005,20(7):402-409.
    [42]Peterson I,Wroblewski J S.Mortality rate of fishes in the pelagic ecosystem[J].Canadian Journal of Fisheries and Aquatic Sciences,2011,41(7):1117-1120.
    [43]Jennings S,Reynolds J D.Body size,exploitation and conservation of marine organisms[M]//Body Size:The Structure and Function of Aquatic Ecosystems.England:Cambridge University Press,2007:266-285.
    [44]Qiu Y S.The regional changes of fish community on the northern continental shelf of South China Sea[J].Journal of Fisheries of China,1988,12(4):303-313.[邱永松.南海北部大陆架鱼类群落的区域性变化[J].水产学报,1988,12(4):303-313.]
    [45]Wang Y Z,Sun D R,Jia X P,et al.Influence of fishing pressure and climate change on filefish catches in East China Sea[J].South China Fisheries Science,2013,9(1):8-15.[王跃中,孙典荣,贾晓平,等.捕捞压力和气候变化对东海马面鲀渔获量的影响[J].南方水产科学,2013,9(1):8-15.]
    [46]Fenberg P B,Roy K.Ecological and evolutionary consequences of size-selective harvesting:How much do we know?[J].Molecular Ecology,2008,17(1):209-220.
    [47]Schwinghamer P.Characteristic size distributions of integral benthic communities[J].Canadian Journal of Fisheries and Aquatic Sciences,1981,38(10):1255-1263.
    [48]Bianchi G,Gislason H,Graham K,et al.Impact of fishing on size composition and diversity of demersal fish communities[J].ICES Journal of Marine Science,2000,57(3):558-571.
    [49]Andersen K H,Beyer J E,Pedersen M,et al.Life-history constraints on the success of the many small eggs reproductive strategy[J].Theoretical Population Biology,2008,73(4):490-497.
    [50]Mézo P L,Lefort S,Séférian R,et al.Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation[J].Journal of Marine Systems,2016,153:55-66.
    [51]Blanchard J L,Law R,Castle M D,et al.Coupled energy pathways and the resilience of size-structured food webs[J].Theoretical Ecology,2011,4(3):289-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700