用户名: 密码: 验证码:
恒定和波动盐度增加对河口淡水感潮湿地间隙水溶解性甲烷和间隙水化学特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of constant and fluctuating salinity increase on porewater dissolved CH_4 concentration and porewater chemical characteristics in estuarine freshwater tidal wetland
  • 作者:何露露 ; 黄佳芳 ; 谭立山 ; 仝川
  • 英文作者:HE Lulu;HUANG Jiafang;TAN Lishan;TONG Chuan;School of Geographical Sciences, Fujian Normal University;Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education;Research Centre of Wetlands in Subtropical Region, Fujian Normal University;
  • 关键词:盐度 ; 间隙 ; 溶解性CH_4 ; 河口湿地 ; 短叶茳芏
  • 英文关键词:salinity;;porewater;;dissolved CH_4;;estuarine marsh;;Cyperus malaccensis
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:福建师范大学地理科学学院;湿润亚热带生态-地理过程教育部重点实验室;福建师范大学亚热带湿地研究中心;
  • 出版日期:2018-11-07 15:36
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.41371127);; 福建省基本科研专项重点项目(No.2014R1034-1);; 福建师范大学校级创新团队项目(No.IRTL1205)
  • 语种:中文;
  • 页:HJXX201902023
  • 页数:11
  • CN:02
  • ISSN:11-1843/X
  • 分类号:205-215
摘要
以闽江河口区塔礁洲河岸分布的短叶茳芏(Cyperus malaccensis)淡水感潮沼泽湿地及其比邻的光滩为研究对象,通过采集土芯和土壤-植物连续体,构建中型生态系统(Mesocosm),并2016年12月—2017年10月模拟持续恒定盐度增加及波动短期盐度增加两种情景,测定间隙水溶解性甲烷(CH_4)浓度及其它理化因子,探讨持续恒定和短期波动盐度增加对河口淡水感潮湿地间隙水溶解性CH_4浓度的影响.结果表明:①2种处理均显著抑制了短叶茳芏沼泽及光滩湿地间隙水溶解性CH_4浓度,波动盐度对于短叶茳芏湿地间隙水溶解性CH_4浓度的抑制效果明显高于光滩;②恒定盐度及波动盐度增加主要通过提高间隙水SO_4~(2-)、Cl~-、NH~+_4-N和TN浓度,降低间隙水pH值,抑制间隙水溶解性CH_4浓度;③短叶茳芏沼泽间隙水溶解性CH_4浓度受间隙水pH值影响最为显著,而光滩间隙水溶解性CH_4浓度则受间隙水NH~+_4-N浓度及气温影响显著.研究表明,未来盐水入侵情景下,河口淡水感潮湿地间隙水溶解性CH_4浓度将下降,且在盐度短期增加情景下,河口淡水感潮沼泽湿地间隙水溶解性CH_4浓度下降幅度大于光滩湿地.
        The effects of the persistent constant salinity and short-term fluctuating salinity increases on porewater dissolved CH_4 and other physical and chemical factors were determined via the mesocosm method. The mesocosm had been manipulated by collecting soil core and soil-plant continuum from the riparian freshwater tidal Cyperus malaccensis marsh and non-vegetated mudflat in the Tajiaozhou in the Min River estuary. The control treatment and constant salinity increase treatment was 0‰ and 10‰, respectively, and the fluctuating salinity increase treatment was three weeks of freshwater with 0‰ and then one week of saltwater of 10‰ during each one month cycle from December 2016 to October 2017. The results showed that:① the two types of salinity raise treatments all had the significant inhibitory effect on the porewater dissolved CH_4 concentration of the C. malaccensis marsh and the mudflat, while the short-term fluctuating salinity had a significantly higher inhibitory on the C. malaccensis marsh than on the mudflat;②the two types of salinity raise treatments inhibited the porewater dissolved CH_4 concentration mainly caused by the increasement of the porewater SO_4~(2-), Cl~-, NH~+_4-N and TN concentration, and the decrease of pH;③the porewater dissolved CH_4 concentration in C. malaccensis marsh was most affected by the porewater pH, while the porewater dissolved CH_4 concentration in the mudflat was significantly affected by the porewater NH~+_4-N concentration and temperature. Our results indicated that saltwater intrusion in future will decrease the porewater dissolved CH_4 concentration in both estuarine freshwater tidal, marsh and bare mudflat, and the decrease of porewater dissolved CH_4 concentration in freshwater tidal marsh is greater than that in bare mudflat under the short-term fluctuating salinity increase.
引文
Askaer L,Bo E,Friborg T,et al.2011.Plant-mediated CH4,transport and C gas dynamics quantified in-situ in a Phalaris arundinacea -dominant wetland[J].Plant and Soil,343(1/2):287-301
    Baldwin D S,Rees G N,Mitchell A M,et al.2006.The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a fresh water wetland[J].Wetlands the Journal of the Society of the Wetland Scientists,26(2):455-464
    Chambers L G,Reddy K R,Osborne T Z.2011.Short-term response of carbon cycling to salinity pulses in a freshwater wetland[J].Soil Science Society of America Journal,75(5):2000-2007
    Ding W X,Zhang Y H,Cai Z C.2010.Impact of permanent inundation on methane emissions from a Spartina alterniflora coastal salt marsh[J].Atmospheric Environment,44(32):3894-3900
    Ding W,Cai Z,Tsuruta H.2005.Factors affecting seasonal variation of methane concentration in water in a freshwater marsh vegetated with Carex lasiocarpa[J].Biology and Fertility of Soils,41(1):1-8
    Eriksson T,Ouml Quist M G,Nilsson M B.2010.Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition[J].Global Change Biology,16(7):2130-2144
    冯小平,王义东,王博祺,等.2015.盐分对湿地甲烷排放影响的研究进展[J].生态学杂志,34(1):237-246
    Geurts J J,Smolders A J,Banach A M,et al.2010.The interaction between decomposition,net N and P mineralization and their mobilization to the surface water in fens[J].Water Research,44(11):3487
    侯晓娟,徐明岗,李冬初,等.2010.长期施用含硫含氯化肥稻田土壤化学性质的演变特征[J].中国农业科学,43(12):2460-2468
    IPCC.2013.The Physical Science Basis.Working Group I Contribution to the Fifth Assessment Report of the Inter-governmental Panel on Climate Change[M].Cambridge:Cambridge University Press
    姜欢欢,孙志高,王玲玲,等.2012.秋季黄河口滨岸潮滩湿地系统CH4通量特征及影响因素研究[J].环境科学,33(2):565-573
    Kazunori M,Seiichi N,Takuji S,et al.2010.Annual emissions of dissolved CO2,CH4,and N2O in the subsurface drainage from three cropping systems[J].Global Change Biology,16(2):796-809
    Kiehn W M,Mendelssohn I A,White J R.2013.Biogeochemical recovery of oligohaline wetland soils experiencing a salinity pulse[J].Soil Science Society of America Journal,77(6):2205-2215
    Knittel K,Boetius A.2009.Anaerobic oxidation of methane:Progress with an unknown process[J].Annual Review of Microbiology,63(63):311
    Konnerup D,Villamil C,Parra J P.2014.Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta,Colombia[J].Estuarine Coastal and Shelf Science,140(Complete):43-51
    Krauss K W,Whitbeck J L.2012.Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River,Georgia (USA)[J].Wetlands,32(1):73-81
    Loáiciga H A,Pingel T J,Garcia E S.2012.Sea water intrusion by sea-level rise:scenarios for the 21st century[J].Groundwater,50(1):37-47
    李玲,仇少君,刘京涛,等.2012.土壤溶解性有机碳在陆地生态系统碳循环中的作用[J].应用生态学报,23(5):1407-1414
    刘剑秋,曾从盛.2010.福建湿地及其生物多样性[M].北京:科学出版社
    罗敏,黄佳芳,刘育秀,等.一种滨海湿地滨海潮滩物孔隙水采样器湿地沉积物孔隙水采样器[P]. 中国.201621472027.1.2016-12-30
    Marton J M,Herbert E R,Craft C B.2012.Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils[J].Wetlands,32(2):347-357
    牟晓杰,刘兴土,仝川,等.2012.闽江河口短叶茳芏湿地CH4和N2O排放对氮输入的短期响应[J].环境科学,33(7):2482-2489
    Neubauer S C.2013.Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology[J].Estuaries and Coasts,36(3):491-507
    Nisbet R E R,Fisher R,Nimmo R H,et al.2009.Emission of methane from plants[J].Proceedings of the Royal Society B Biological Sciences,276(1660):1347
    Pivni-ková,Rejmánková B,Snyder E,et al.2010.Heterotrophic microbial activities and nutritional status of microbial communities in tropical marsh sediments of different salinities:the effects of phosphorus addition and plant species[J].Plant and Soil,336(336):49-63
    Poffenbarger H J,Needelman B A,Megonigal J P.2011.Salinity influence on methane emissions from tidal marshes[J].Wetlands,31(5):831-842
    Rice A L,Butenhoff C L,Shearer M J,et al.2010.Emissions of anaerobically produced methane by trees[J].Geophysical Research Letters,37(3):202-217
    Rooneyvarga J N,Giewat M W,Duddleston K N,et al.2007.Links between archaeal community structure,vegetation type and methanogenic pathway in Alaskan peatlands[J].Fems Microbiology Ecology,60(2):240-251
    Roos L,Erika V D,Leonpm L,et al.2007.How soil characteristics and water quality influence the biogeochemical response to flooding in riverine wetlands[J].Biogeochemistry,85(3):289-302
    Soderberg K H,Baath E.2004.The influence of nitrogen fertilization on bacterial activity in the rhizosphere of barley[J].Soil Biology and Biochemistry,36(1):195-198
    Sun Z,Jiang H,Wang L,et al.2013.Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary,China[J].Plant and Soil,369(1):317-333
    沙晨燕,谭娟,王卿,等.2015.不同类型河滨湿地甲烷和二氧化碳排放初步研究[J].生态环境学报,24(7):1182-1190
    陶宝先,陈永金.2016.不同形态氮输入对湿地生态系统碳循环影响的研究进展[J].生态环境学报,25(1):162-167
    王纯.2015.模拟盐水入侵对闽江口淡水湿地温室气体产生与排放的影响[D].福州:福建师范大学
    王进欣,王今殊,钦佩,等.2011.生源气体排放的潮周期动态研究:关键科学问题与不确定性[J].海洋湖沼通报,(4):134-143
    王盼盼,李玲玲,陈洪涛,等.2014.黄河口湿地沉积物间隙水中营养盐研究[J].海洋湖沼通报,(4):97-103
    王维奇,曾从盛,仝川,等.2012.闽江河口潮汐湿地二氧化碳和甲烷排放化学计量比[J].生态学报,32(14):4396-4402
    王维奇,曾从盛,仝川.2010.闽江河口湿地土壤甲烷产生潜力动态及对氮输入的响应[J].农业系统科学与综合研究,26(2):209-213
    Weston N B,Dixon R E,Joye S B.2006.Ramifications of increased salinity in tidal freshwater sediments:Geochemistry and microbial pathways of organic matter mineralization[J].Journal of Geophysical Research Atmospheres,111(G1):689-699
    闫兴成,王明玥,许晓光,等.2018.富营养化湖泊沉积物有机质矿化过程中碳、氮、磷的迁移特征[J].湖泊科学,30(2):306-313
    杨平,张子川,杜威宁,等.2015.河口盐度梯度下短叶茳芏沼泽湿地土壤间隙水溶解性甲烷时空特征[J].环境科学,36(10):3633-3640
    曾从盛,王维奇,仝川.2008.不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响[J].地理研究,27(6):1321-1330
    张子川,杨平,仝川.2015.盐分对河口淡水、微咸水沼泽湿地土壤甲烷产生潜力的影响[J].生态学报,35(24):8075-8084

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700