用户名: 密码: 验证码:
深水盆地高温高压环境下的地层压力预测方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A formation pressure prediction method for deepwater basins under high temperatures and high pressures
  • 作者:彭海龙 ; 刘兵 ; 赫建伟 ; 李文拓 ; 吴云鹏
  • 英文作者:Peng Hailong;Liu Bing;He Jianwei;Li Wentuo;Wu Yunpeng;CNOOC China Limited Zhanjiang Branch;
  • 关键词:南海 ; 琼东南盆地 ; 深水盆地 ; 高温高压 ; 地层压力预测 ; 误差 ; 孔隙压力 ; 破裂压力 ; 压力系数 ; 泊松比
  • 英文关键词:South China Sea;;Qiongdongnan Basin;;Deepwater basin;;High temperature and high pressure;;Formation pressure prediction;;Error;;Pore pressure;;Fracturing pressure;;Pressure coefficient;;Poisson's ratio
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:中海石油(中国)有限公司湛江分公司;
  • 出版日期:2018-03-25
  • 出版单位:天然气工业
  • 年:2018
  • 期:v.38;No.293
  • 基金:中海石油(中国)有限公司科技项目“纵波各向异性在地震资料处理和储层预测中的应用研究”(编号:YXKY-2016-ZHJ-01)
  • 语种:中文;
  • 页:TRQG201803004
  • 页数:7
  • CN:03
  • ISSN:51-1179/TE
  • 分类号:30-36
摘要
目前,应用于南海琼东南盆地深水高温高压地区地层压力预测的方法主要为测井法、经验公式法、地震法等,由于其局限性及该区勘探对象的复杂性,致使应用效果不佳。为了提高该区地层压力预测的精度,在分析常规经验公式法原理和考虑区域压实背景多样性的基础上,结合已有的钻井资料,建立了不同区域、不同构造的正常压实速度趋势线,拟合速度与深度的关系,计算孔隙压力,形成了新的常规经验公式法(以下简称新方法);在Stephen公式的基础上,通过引入地层抗张强度、分段选择泊松比取值,计算了地层破裂压力。研究结果表明:(1)所建立的正常压实速度趋势线不需要对目标区内的岩性做出判断,可直接对目标区地层正常压实范围内的压实速度进行拟合;(2)当达到一定的地层深度后,纵波、横波速度比和泊松比基本上不受深度的影响,泊松比的这一特性可被用于分段计算破裂压力;(3)新方法预测的地层压力系数绝对误差小于0.07、相对误差小于5%。结论认为,基于新方法开发的压力预测平台可用于南海相关深水盆地高温高压环境下的地层压力预测,预测结果误差范围小、精度高,满足了设计要求、提高了工作效率,具有良好的应用前景。
        At present, the formation prediction methods used in the high-temperature and high-pressure areas of the Qiongdongnan Basin, South China Sea, mainly include the logging method, empirical formula and seismic method, etc., but their application effects are not satisfactory due to their limitations and the complexity of exploration targets. In order to increase the prediction accuracy of formation pressure in this area, we analyzed the principles of conventional empirical formula method. Considering the diversity of regional compaction settings, combined with the existing drilling data, the normal compaction velocity trend lines were established for different zones and structures to fit the velocity-depth relationship and calculate the pore pressure. Thus, a new conventional empirical formula method(hereinafter "a new method" for short) was developed. On the basis of Stephen formula, the formation fracturing pressure was calculated by introducing formation tensile strength and by selecting the value of Poisson's ratio segmentally. The following research results were obtained. First, by virtue of the normal compaction velocity trend lines established in this paper, the compaction velocity of the target formations in the normal compaction range can be fitted directly without any lithological identification of the target area. Second, when the formation depth reaches a certain value, the compression/shear wave ratio and the Poisson's ratio are hardly affected by the depth and this characteristic of Poisson's ratio can be used to calculate the fracturing pressure segmentally. Third, when this new method was used to predict the formation pressure coefficient, the absolute error was less than 0.07 and the relative error was less than 5%. In conclusion, the pressure prediction platform which is developed based on this new method can be used to predict the formation pressure of deepwater basins under high temperatures and high pressures in the South China Sea, and the prediction results are accurate with a small error range. Obviously, it satisfies the design requirement, increases the working efficiency and presents a promising application prospect.
引文
[1]杨振平,吴波,王勇.Eaton法预测M油田地层孔隙压力[J].石油天然气学报,2012,34(9):181-187.Yang Zhenping,Wu Bo&Wang Yong.Application of Eaton method in predicting the formation pore pressure of M oilfield[J].Journal of Oil and Gas Technology,2012,34(9):181-187.
    [2]陈胜,赵文智,欧阳永林,曾庆才,杨青,侯华星,等.利用地球物理综合预测方法识别页岩气储层甜点——以四川盆地长宁区块下志留统龙马溪组为例[J].天然气工业,2017,37(5):20-30.Chen Sheng,Zhao Wenzhi,Ouyang Yonglin,Zeng Qingcai,Yang Qing,Hou Huaxing,et al.Comprehensive prediction of shale gas sweet spots based on geophysical properties:A case study of the Lower Silurian Longmaxi Fm in Changning Block,Sichuan Basin[J].Natural Gas Industry,2017,37(5):20-30.
    [3]Fillippone WR.On the prediction of abnormally pressured sedimentary rocks from seismic data[C]//Offshore Technology Conference,30 April-3 May 1979,Houston,Texas,USA.
    [4]张兆辉,姚军,苏明军.井—震拟合反演压力系数技术及应用[J].天然气地球科学,2016,27(4):739-744.Zhang Zhaohui,Yao Jun&Su Mingjun.Logging and seismic fitting inversion pressure coefficient technology and its application[J].Natural Gas Geoscience,2016,27(4):739-744.
    [5]屈大鹏,陈超,王明飞,苏建龙.川东南地区基于海相泥页岩地层的压力系数预测——以丁山区块为例[J].物探与化探,2016,40(2):349-352.Qu Dapeng,Chen Chao,Wang Mingfei&Su Jianlong.Researches based on the prediction methods of marine-shale pressure coefficients in southeastern Sichuan Basin:A case study of DS area[J].Geophysical and Geochemical Exploration,2016,40(2):349-352.
    [6]Fillippone WR.Estimation of formation parameters and the prediction of overpressures from seismic data[C]//1982 SEG Annual Meeting,17-21 October 1982,Dallas,Texas,USA.
    [7]刘震,张万选,张厚福,邓祖佑.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14(1):14-24.Liu Zhen,Zhang Wanxuan,Zhang Houfu&Deng Zuyou.An analysis of abnormal formation pressures of Paleogene in the north sag of Liaoxi Depression[J].Acta Petrolei Sinica,1993,14(1):14-24.
    [8]吴波,王荐,潘树林,赵爽.基于高低频速度闭合技术的地层压力预测[J].石油物探,2017,56(4):575-580.Wu Bo,Wang Jian,Pan Shulin&Zhao Shuang.Formation pressure prediction based on a closed velocity body by merging the high frequency velocity with the low frequency velocity[J].Geophysical Prospecting for Petroleum,2017,56(4):575-580.
    [9]Zhang Jincai.Pore pressure prediction from well logs:Methods,modifications,and new approaches[J].Earth Science Reviews,2011:108(1-2):50-63.
    [10]周拿云,杨兆中.地层破裂压力预测技术综述[J].重庆科学技术学院学报(自然科学版),2011,13(1):36-39.Zhou Nayun&Yang Zhaozhong.Overview on pressure prediction of formation fracture[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2011,13(1):36-39.
    [11]张伟,邓嵩,樊洪海,王国斌,申延晴,沈维格.地层破裂压力三维计算与显示方法[J].科学技术与工程,2014,14(34):140-144.Zhang Wei,Deng Song,Fan Honghai,Wang Guobin,Shen Yanqing&Shen Weige.3D calculation and display for formation fracture pressure[J].Science Technology and Engineering,2014,14(34):140-144.
    [12]罗黎敏,胜亚楠,刘晓坡,管志川,刘书杰,冯桓榰.含可信度地层破裂压力的钻前预测方法[J].断块油气田,2017,24(1):112-115.Luo Limin,Sheng Yanan,Liu Xiaopo,Guan Zhichuan,Liu Shujie&Feng Huanzhi.Pre-drilling prediction of fracture pressure with credibility[J].Faul-Block Oil&Gas Field,2017,24(1):112-115.
    [13]夏宏泉,张元泽,陈平,刘之的,范翔宇.碳酸盐岩地层破裂压力的测井预测研究[J].天然气工业,2004,24(8):32-35.Xia Hongquan,Zhang Yuanze,Chen Ping,Liu Zhide&Fan Xiangyu.Log prediction of carbonate formation breakdown pressure[J].Natural Gas Industry,2004,24(8):32-35.
    [14]李昌盛,宋海,肖莉,杨传书,徐术国.基于遗传算法优化BP神经网络的地层破裂压力预测方法[J].西安石油大学学报(自然科学版),2015,30(5):75-79.Li Changsheng,Song Hai,Xiao Li,Yang Chuanshu&Xu Shuguo.Prediction method of formation fracture pressure based on BP neural network optimized by genetic algorithm(GA)[J].Journal of Xi'an Shiyou University(Natural Science Edition),2015,30(5):75-79.
    [15]谢玉洪.南海北部自营深水天然气勘探重大突破及其启示[J].天然气工业,2014,34(10):1-8.Xie Yuhong.A major breakthrough in deepwater natural gas exploration in a self-run oil/gas field in the northern South China Sea and its enlightenment[J].Natural Gas Industry,2014,34(10):1-8.
    [16]王振峰,胡代圣.莺歌海盆地中央泥拱构造带大气田勘探方向[J].天然气工业,1999,19(1):28-30.Wang Zhenfeng&Hu Daisheng.Prospecting for giant gas fields in the central mud diapir structure belt in Yinggehai Basin[J].Natural Gas Industry,1999,19(1):28-30.
    [17]王振峰,罗晓容.莺琼盆地高温高压地层钻井压力预监测技术研究[M].北京:石油工业出版社,2004.Wang Zhenfeng&Luo Xiaorong.Research of drilling pressure prediction and dectection method in high temperature and high pressure formation of Yingqiong Basin[M].Beijing:Petroleum Industry Press,2004.
    [18]刘全稳,何家雄,陈国民.莺歌海盆地中深层天然气成藏特征[J].天然气工业,2005,25(9):1-3.Liu Quanwen,He Jiaxiong&Chen Guomin.Gas reservoiring characteristics of the medium-deep strata in Yinggehai Basin[J].Natural Gas Industry,2005,25(9):1-3.
    [19]谢玉洪,李绪深,徐新德,童传新,熊小峰.莺—琼盆地高温高压领域天然气成藏与勘探大突破[J].中国石油勘探,2016,21(4):19-29.Xie Yuhong,Li Xushen,Xu Xinde,Tong Chuanxin&Xiong Xiaofeng.Gas accumulation and great exploration breakthroughs in HTHP formations within Yinggehai-Qiongdongnan Basins[J].China Petroleum Exploration,2016,21(4):19-29.
    [20]王振峰,孙志鹏,张迎朝,郭明刚,朱继田,黄保家,等.南海北部琼东南盆地深水中央峡谷大气田分布与成藏规律[J].中国石油勘探,2016,21(4):54-64.Wang Zhenfeng,Sun Zhipeng,Zhang Yingzhao,Guo Minggang,Zhu Jitian,Huang Baojia,et al.Distribution and hydrocarbon accumulation mechanism of the giant deepwater Central Canyon gas field in Qiongdongnan Basin,northern South China Sea[J].China Petroleum Exploration,2016,21(4):54-64.
    [21]马启富.超压盆地与油气分布[M].北京:地质出版社,2000.Ma Qifu.Overpressured basin with the oil and gas distribution[M].Beijing:Geological Publishing House,2000.
    [22]张发强,王震亮,吴亚生,杨计海,罗晓容.消除影响压实趋势线地质因素的方法——以莺歌海盆地为例[J].沉积学报,2002,20(2):326-332.Zhang Faqiang,Wang Zhenliang,Wu Yasheng,Yang Jihai&Luo Xiaorong.A method for eliminating geology factors of affecting compaction trendline:An example from Yinggehai Basin[J].Acta Sedimentologica Sinica,2002,20(2):326-332.
    [23]张树林,姜立红.莺琼盆地岩石弹性物性规律的研究[J].物探化探计算技术,2001,23(4):308-313.Zhang Shulin&Jiang Lihong.The study of the regularities of the rock elastic properties in Yingqiong Basin[J].Computing Techniques for Geophysical and Geochemical Exploration,2001,23(4):308-313.
    [24]史飞洲,王彦春,孙炜.一种精确的纵波速度计算方法[J].科学技术与工程,2017,17(16):7-12Shi Feizhou,Wang Yanchun&Sun Wei.An accurate calculation method of compressional wave velocity[J].Science Technology and Engineering,2017,17(16):7-12.
    [25]陈森,阎贫,王彦林.东沙群岛西南泥火山区Chirp浅剖数据的海底物性反演[J].地球科学,2016,41(3):425-432.Chen Sen,Yan Pin&Wang Yanlin.Inversion of the physical properties of the seabed using Chirp sub-bottom data in mud volcanoes field of the southwest of Dongsha Islands[J].Earth Science,2016,41(3):425-432.
    [26]刘洁,张建中,孙运宝,赵铁虎.基于地震谱反演的地层速度估算方法及应用[J].石油地球物理勘探,2016,51(5):909-915.Liu Jie,Zhang Jianzhong,Sun Yunbao&Zhao Tiehu.Seismic velocity estimation method based on spectral inversion[J].Oil Geophysical Prospecting,2016,51(5):909-915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700