用户名: 密码: 验证码:
钴源后装机源强度实验测量与蒙特卡罗模拟计算的比较研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A comparative study on the actual measurement and Monte Carlo simulation about radiation intensity of cobalt source of afterloader device
  • 作者:袁继龙 ; 马桥 ; 何志坚 ; 薛娴 ; 程金生
  • 英文作者:YUAN Ji-long;MA Qiao;HE Zhi-jian;Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention;
  • 关键词:近距离治疗 ; 钴源 ; 空气比释动能强度 ; 后装治疗机
  • 英文关键词:Brachytherapy;;Cobalt source;;Air kerma intensity;;Medical afterloader device
  • 中文刊名:YXZB
  • 英文刊名:China Medical Equipment
  • 机构:中国疾病预防控制中心辐射防护与核安全医学所辐射防护与核应急中国疾病预防控制中心重点实验室;四川省疾病预防控制中心;
  • 出版日期:2018-05-16 15:27
  • 出版单位:中国医学装备
  • 年:2018
  • 期:v.15;No.165
  • 基金:国际原子能机构2014-2015国际合作项目(CPR6006)“加强现代核医学、放射诊断和放射治疗实践的质量保证”
  • 语种:中文;
  • 页:YXZB201805006
  • 页数:3
  • CN:05
  • ISSN:11-5211/TH
  • 分类号:23-25
摘要
目的:针对钴源医用后装机源强度,即源空气比释动能强度进行剂量学研究。方法:分别对国内临床使用的国产GZP3型钴源后装机和德国Co0.A86型钴源后装机,采用井型电离室实验测量和基于蒙特卡罗模拟计算的方法,进行源空气比释动能强度的剂量学比较研究。结果:实验测量和蒙特卡罗模拟计算的源空气比释动能强度偏差在3.0%之内,两种型号的钴源蒙特卡罗模型得到验证。结论:基于蒙特卡罗模拟的单位源活度空气比释动能强度因子的源强度表示可应用于钴源后装机质量控制检测中,本研究建立的两种型号的钴源蒙特卡罗模型可以开展相关临床剂量学研究应用。
        Objective: To carry out dosimetry study for the intensity of primal air kerma of the cobalt source of medical afterloader device. Methods: The experimental measurement of well-type ionization chamber and Monte Carlo simulation method were adopted to compare the dosimetry of primal air kerma between GZP3 of domestic afterloader device of cobalt source and Co0.a86 of Germany. Results: The deviation of intensity of primal air kerma between the experimental measurement and Monte Carlo simulation was within 3%, and the Monte Carlo models of the two types of cobalt source were verified. Conclusion: The primal intensity of intensity factor of air kerma per unit source activity based on Monte Carlo simulation can be applied in the test of quality control of cobalt source of afterloder device. The two type of Monte Carlo models of cobalt source which established in this study can be used to carry out correlatively clinical research of dosimetry.
引文
[1]Richter J,Baier K,Flentje M.The Use of 60Cosources for Afterloading alternate to 192Irsources[M].World Congress on Medical Physics and Biomedical Engineering 2006.Springer Berlin Heidelberg,2007:1726-1729.
    [2]Azhari HA,Hensley F,Schütte W,et al.Dosimetric verification of source strength for HDRafterloading units with Ir-192 and Co-60 photon sources:Comparison of three different international protocols[J].J Med Phys,2012,37(4):183-192.
    [3]Islam MA,Akramuzzaman MM,Zakaria GA.Dosimetric comparison between the microS electron HDR 192Ir v2 source and the BEBIG 60Co source for HDR brachytherapy using the EGSnrc Monte Carlo transport code[J].J Med Phys,2012,37(4):219-225.
    [4]Anwarul IM,Akramuzzaman MM,Zakaria GA.EGSnrc Monte Carlo-aided dosimetric studies of the new BEBIG(60)Co HDR brachytherapy source[J].JContemp Brachytherapy,2013,5(3):148-156.
    [5]Campos LT,de Almeida CE.Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy[J].Plos One,2015,10(9):e0139032.
    [6]Sander T.Air kerma and absorbed dose standards for reference dosimetry in brachytherapy[J].Br JRadiol,2014,87(1041):176-189.
    [7]王先良,袁珂,唐斌,等.GZP型60Co源剂量学参数的蒙特卡洛模拟[J].中华放射肿瘤学杂志,2016,25(5):489-495.
    [8]龙凤翔,许安建,雷琴,等.GZP3钴-60近距离治疗源剂量学参数的蒙特卡洛计算[J].中国医学物理学杂志,2017,34(2):115-120.
    [9]王俊.GZP3近距离放疗剂量学参数模拟与DVH计算[D].成都:成都理工大学,2015.
    [10]中华人民共和国卫生行业标准.WS262-2017后装γ源近距离治疗质量控制检测规范[S].中华人民共和国国家卫生和计划生育委员会,2017-04-10.
    [11]Schüller A,Meier M,Selbach HJ,et al.A radiation quality correction factor kQ for well-type ionization chambers for the measurement of the reference air kerma rate of 60Co HDR brachytherapy sources[J].Medical Physics,2015,42(7):4285-4294.
    [12]Perezcalatayud J,Ballester F,Das RK,et al.Dose calculation for photon-emitting brachytherapy sources with average energy higher than50 ke V:report of the AAPM and ESTRO[J].Medical Physics,2012,39(5):2904-2929.
    [13]Sahoo S,Selvam TP,Sharma SD,et al.Dosimetry of indigenously developed(192)Ir high-dose rate brachytherapy source:An EGSnrc Monte Carlo study[J].J Med Phys,2016,41(2):115-122.
    [14]Borg J,Rogers DWO.Spectra and air-kerma strength for encapsulated 192Ir sources[J].Med.Phys,1999,26(11):2441-2444.
    [15]Rivard MJ,Granero D,Perezcalatayud J,et al.Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air[J].Medical Physics,2010,37(2):869-876.
    [16]Tabrizi SH,Asl AK,Azma Z.Monte Carlo derivation of AAPM TG-43 dosimetric parameters for GZP6Co-60 HDR sources[J].Phys med,2012,28(2):153-160.
    [17]Nath R,Anderson LL,Meli JA,et al.Code of practice for brachytherapy physics:Report of the AAPM Radiation Therapy Committee Task Group No.56[J].Medical Physics,1997,24(10):1557-1598.
    [18]袁继龙,程金生,刘立明,等.动态旋转体部伽玛刀辐射剂量学蒙特卡罗模拟研究[J].中国医学装备,2017,14(8):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700